Skip to main content
Log in

Molecular cloning and characterization of a novel splice variant of the LIM domain family gene, PINCH 2, in human testis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, we identified a novel human testis gene, PINCH 2. PINCH 2 expression was 3.4-fold higher in adult than in fetal testis. The full length of its cDNA was 963. bp, with a 354-bp open reading frame (ORF), encoding a 117-amino acid protein. PINCH 2 was a splicing isoform of PINCH. It shared one exon, which encoded the LIM domain, with PINCH gene in human genome. Multitissue reverse transcriptase-polymerase chain reaction (RTPCR) analysis revealed that this gene was expressed variably in a wide range of tissues, with high expression levels in human adult testis. These results suggest that PINCH 2, a novel LIM domain-containing gene, may play an important role in testicular development/spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddy, E. M. (1998) Regulation of gene expression during spermatogenesis. Semin. Cell Dev. Biol. 9, 451–457.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis, R. (1999) Human Genetics Concepts and Applications, 3rd ed. McGraw-Hill, Boston, MA.

    Google Scholar 

  3. Lawler, A. M. and Gearhart, J. D. (1998) Genetic counseling for patients who will be undergoing treatment with assisted reproductive technology. Fertil. Steril. 70, 412–413.

    Article  PubMed  CAS  Google Scholar 

  4. Escalier, D. (2001) Impact of genetic engineering on the understanding of spermatogenesis. Hum. Reprod. Update 7, 191–210.

    Article  PubMed  CAS  Google Scholar 

  5. Martin-du Pan, R. C. and Campana, A. (1993) Physiopathology of spermatogenic arrest. Fertil. Steril. 60, 937–946.

    PubMed  CAS  Google Scholar 

  6. Andrews, J., Bouffard, G. G., Cheadle, C., Lu, J., Becker, K. G., and Oliver, B. (2000) Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res. 10, 2030–2043.

    Article  PubMed  CAS  Google Scholar 

  7. Sha, J., Zhou, Z., Li, J., et al. (2002) Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol. Hum. Reprod. 8, 511–517.

    Article  PubMed  CAS  Google Scholar 

  8. Schlecht, U., Demougin, P., Koch, R., et al. (2004) Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility. Mol. Biol. Cell. 15, 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  9. Diatchenko, L., Lau, Y. F., Campbell, A. P., et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  10. Diatchenko, L., Lukyanov, S., Lau, Y. F., and Siebert, P. D. (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 303, 349–380.

    Article  PubMed  CAS  Google Scholar 

  11. Liang, P. and Pardee, A. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  12. Hansis, C., Jahner, D., Spiess, A. N., Boettcher, K., and Ivell, R. (1998) The gene for the Alzheimer-associated beta-amyloid-binding protein (ERAB) is differentially expressed in the testicular Leydig cells of the azoospermic by w/w (v) mouse. Eur. J. Biochem. 258, 53–60.

    Article  PubMed  CAS  Google Scholar 

  13. Anway, M. D., Johnston, D. S., Crawford, D., and Griswold, M. D. (2001) Identification of a novel retrovirus expressed in rat Sertoli cells and granulosa cells. Biol. Reprod. 65, 1289–1296.

    Article  PubMed  CAS  Google Scholar 

  14. Eickhoff, H., Schuchhardt, J., Ivanov, I., et al. (2000) Tissue gene expression analysis using arrayed normalized cDNA libraries. Genome Res. 10, 1230–1240.

    Article  PubMed  CAS  Google Scholar 

  15. Grimmond, S., Van Hateren, N., Siggers, P., et al. (2000) Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. Hum. Mol. Genet. 9, 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  16. Rockett, J. C., Christopher Luft, J., Brian Garges, J., et al. (2001) Development of a 950-gene DNA array for examining gene expression patterns in mouse testis. Genome Biol. 2, RESEARCH0014.1-0014.9.

  17. Schmeichel, K. L. and Beckerle, M. C. (1994) The LIM domain is a modular protein-binding interface. Cell 79, 211–219.

    Article  PubMed  CAS  Google Scholar 

  18. Retaux, S. and Bachy, I. (2002) A short history of LIM domains (1993–2002): from protein interaction to degradation. Mol. Neurobiol. 26, 269–281.

    Article  PubMed  CAS  Google Scholar 

  19. Kadrmas, J. L. and Beckerle, M. C. (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell. Biol. 5, 920–931.

    Article  PubMed  CAS  Google Scholar 

  20. Maul, R. S., Song, Y., Amann, K. J., Gerbin, S. C., Pollard, T. D., and Chang, D. D. (2003) EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J. Cell Biol. 160, 399–407.

    Article  PubMed  CAS  Google Scholar 

  21. Pomies, P., Macalma, T., and Beckerle, M. C. (1999) Purification and characterization of an alpha-actinin-binding PDZ-LIM protein that is up-regulated during muscle differentiation. J. Biol. Chem. 274, 29242–29250.

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki, T., Nakamoto, T., Ogawa, S., et al. (2002) MICAL, a novel CasL interacting molecule, associates with vimentin. J. Biol. Chem. 277, 14933–14941.

    PubMed  CAS  Google Scholar 

  23. Terman, J. R., Mao, T., Pasterkamp, R. J., Yu, H. H., and Kolodkin, A. L. (2002) MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109, 887–900.

    Article  PubMed  CAS  Google Scholar 

  24. Lundquist, E. A., Herman, R. K., Shaw, J. E., and Bargmann, C. I. (1998) UNC-115, a conserved protein with predicted LIM and actin-binding domains mediates axon guidance in C. elegans. Neuron 21, 385–392.

    Article  PubMed  CAS  Google Scholar 

  25. Tu, Y., Wu, S., Shi, X., Chen, K., and Wu, C. (2003) Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47.

    Article  PubMed  CAS  Google Scholar 

  26. Tadokoro, S., Shattil, S. J., Eto, K., et al. (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science 302, 103–106.

    Article  PubMed  CAS  Google Scholar 

  27. Tu, Y., Li, F., Goicoechea, S., and Wu, C. (1999) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol. Cell. Biol. 19, 2425–2434.

    PubMed  CAS  Google Scholar 

  28. Morgan, M. J. and Madgwick, A. J. (1999) The fourth member of the FHL family of LIM proteins is expressed exclusively in the testis. Biochem. Biophys. Res. Commun. 255, 251–255.

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi, H., Koshimizu U., and Nakamura, T. (1998) A novel transcript encoding truncated LIM kinase 2 is specifically expressed in male germ cells undergoing meiosis. Biochem. Biophys. Res. Commun. 249, 138–145.

    Article  PubMed  CAS  Google Scholar 

  30. Birk, O. S., Casiano, D. E., Wassif, C. A., et al. (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913.

    Article  PubMed  CAS  Google Scholar 

  31. Rearden, A. (1994) A new LIM protein containing an autoepitope homologous to “senescent cell antigen”. Biochem. Biophys. Res. Commun. 201, 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  32. Fukuda, T., Chen, K., Shi, X., and Wu, C. (2003) PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem. 278, 51324–51333.

    Article  PubMed  CAS  Google Scholar 

  33. Velyvis, A., Yang, Y., Wu, C., and Qin, J. (2001) Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain. J. Biol. Chem. 276, 4932–4939.

    Article  PubMed  CAS  Google Scholar 

  34. Li, F., Zhang, Y., and Wu, C. (1999) Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J. Cell Sci. 112 (Pt 24), 4589–4599.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Li.

Additional information

Equal contributors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, J., Chen, J. et al. Molecular cloning and characterization of a novel splice variant of the LIM domain family gene, PINCH 2, in human testis. Mol Biotechnol 35, 109–118 (2007). https://doi.org/10.1007/BF02686105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686105

Index Entries

Navigation