Abstract
Iff is a C1 + ɛ diffeomorphism of a compact manifold M, we prove the existence of stable manifolds, almost everywhere with respect to everyf-invariant probability measure on M. These stable manifolds are smooth but do not in general constitute a continuous family. The proof of this stable manifold theorem (and similar results) is through the study of random matrix products (multiplicative ergodic theorem) and perturbation of such products.
References
M. A. Akcoglu andL. Sucheston,A ratio ergodic theorem for superadditive processes, to appear.
R. Bowen andD. Ruelle, The ergodic theory of Axiom A flows,Inventiones math.,29 (1975), 181–202.
Y. Derriennic, Sur le théorème ergodique sous-additif,C.R.A.S. Paris,281 A (1975), 985–988.
H. Furstenberg andH. Kesten, Products of random matrices,Ann. Math. Statist.,31 (1960), 457–469.
M. W. Hirsch,Differential topology, Graduate Texts in Mathematics, no 33, Berlin, Springer, 1976.
M. Hirsch, C. Pugh andM. Shub,Invariant manifolds, Lecture Notes in Math., no 583, Berlin, Springer, 1977.
K. Jacobs,Lecture notes on ergodic theory (2 vol.), Aarhus, Aarhus Universitet, 1963.
S. Katok,The estimation from above for the topological entropy of a diffeomorphism, to appear.
J. F. C. Kingman, The ergodic theory of subadditive stochastic processes,J. Royal Statist. Soc.,B 30 (1968), 499–510.
J. F. C. Kingman,Subadditive processes, in École d’été des probabilités de Saint-Flour, Lecture Notes in Math., no 539, Berlin, Springer, 1976.
V. I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems,Trudy Moskov. Mat. Obšč.,19 (1968), 179–210. English transl.Trans. Moscow Math Soc.,19 (1968), 197–231.
Ya. B. Pesin, Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure,Dokl. Akad. Nauk SSSR,226, no 4 (1976), 774–777. English transl.Soviet Math. Dokl.,17, no 1 (1976), 196–199.
Ya. B. Pesin, Invariant manifold families which correspond to nonvanishing characteristic exponents,Izv. Akad. Nauk SSSR, Ser. Mat.40, no 6 (1976), 1332–1379. English transl.Math. USSR Izvestija,10, no 6 (1976), 1261–1305.
Ya. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory,Uspehi Mat. Nauk,32, no 4 (196) (1977), 55–112. English transl.,Russian Math. Surveys,32, no 4 (1977), 55–114.
M. S. Raghunathan, A proof of Oseledec’ multiplicative ergodic theorem.Israel. J. Math., to appear.
D. Ruelle, A measure associated with axiom A attractors,Amer. J. Math.,98 (1976), 619–654.
D. Ruelle, An inequality for the entropy of differentiable maps,Bol. Soc. Bras. Mat.,9 (1978), 83–87.
D. Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems,Ann. N.Y. Acad. Sci., to appear.
Ya. G. Sinai, Gibbs measures in ergodic theory,Uspehi Mat. Nauk,27, no 4 (1972), 21–64. English transl.Russian Math. Surveys,27, no 4 (1972), 21–69.
S. Smale, Notes on differentiable dynamical systems,Proc. Sympos. Pure Math.,14, A.M.S., Providence, R. I. (1970), pp. 277–287.
J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie,Séminaire Bourbaki, exposé no 482 (1976), Lecture Notes in Math., no 567, Berlin, Springer, 1977.
A. Weil,Basic number theory, Berlin, Springer, 1973, 2nd ed.
Additional information
Dedicated to the memory of Rufus Bowen
About this article
Cite this article
Ruelle, D. Ergodic theory of differentiable dynamical systems. Publications Mathématiques de L’Institut des Hautes Scientifiques 50, 27–58 (1979). https://doi.org/10.1007/BF02684768
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02684768