Skip to main content
Log in

Abstract

Iff is a C1 + ɛ diffeomorphism of a compact manifold M, we prove the existence of stable manifolds, almost everywhere with respect to everyf-invariant probability measure on M. These stable manifolds are smooth but do not in general constitute a continuous family. The proof of this stable manifold theorem (and similar results) is through the study of random matrix products (multiplicative ergodic theorem) and perturbation of such products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. A. Akcoglu andL. Sucheston,A ratio ergodic theorem for superadditive processes, to appear.

  2. R. Bowen andD. Ruelle, The ergodic theory of Axiom A flows,Inventiones math.,29 (1975), 181–202.

    Article  MATH  Google Scholar 

  3. Y. Derriennic, Sur le théorème ergodique sous-additif,C.R.A.S. Paris,281 A (1975), 985–988.

    Google Scholar 

  4. H. Furstenberg andH. Kesten, Products of random matrices,Ann. Math. Statist.,31 (1960), 457–469.

    Google Scholar 

  5. M. W. Hirsch,Differential topology, Graduate Texts in Mathematics, no 33, Berlin, Springer, 1976.

    MATH  Google Scholar 

  6. M. Hirsch, C. Pugh andM. Shub,Invariant manifolds, Lecture Notes in Math., no 583, Berlin, Springer, 1977.

    MATH  Google Scholar 

  7. K. Jacobs,Lecture notes on ergodic theory (2 vol.), Aarhus, Aarhus Universitet, 1963.

    Google Scholar 

  8. S. Katok,The estimation from above for the topological entropy of a diffeomorphism, to appear.

  9. J. F. C. Kingman, The ergodic theory of subadditive stochastic processes,J. Royal Statist. Soc.,B 30 (1968), 499–510.

    Google Scholar 

  10. J. F. C. Kingman,Subadditive processes, in École d’été des probabilités de Saint-Flour, Lecture Notes in Math., no 539, Berlin, Springer, 1976.

    Google Scholar 

  11. V. I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems,Trudy Moskov. Mat. Obšč.,19 (1968), 179–210. English transl.Trans. Moscow Math Soc.,19 (1968), 197–231.

    Google Scholar 

  12. Ya. B. Pesin, Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure,Dokl. Akad. Nauk SSSR,226, no 4 (1976), 774–777. English transl.Soviet Math. Dokl.,17, no 1 (1976), 196–199.

    Google Scholar 

  13. Ya. B. Pesin, Invariant manifold families which correspond to nonvanishing characteristic exponents,Izv. Akad. Nauk SSSR, Ser. Mat.40, no 6 (1976), 1332–1379. English transl.Math. USSR Izvestija,10, no 6 (1976), 1261–1305.

    MATH  Google Scholar 

  14. Ya. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory,Uspehi Mat. Nauk,32, no 4 (196) (1977), 55–112. English transl.,Russian Math. Surveys,32, no 4 (1977), 55–114.

    Google Scholar 

  15. M. S. Raghunathan, A proof of Oseledec’ multiplicative ergodic theorem.Israel. J. Math., to appear.

  16. D. Ruelle, A measure associated with axiom A attractors,Amer. J. Math.,98 (1976), 619–654.

    Article  MATH  Google Scholar 

  17. D. Ruelle, An inequality for the entropy of differentiable maps,Bol. Soc. Bras. Mat.,9 (1978), 83–87.

    Article  MATH  Google Scholar 

  18. D. Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems,Ann. N.Y. Acad. Sci., to appear.

  19. Ya. G. Sinai, Gibbs measures in ergodic theory,Uspehi Mat. Nauk,27, no 4 (1972), 21–64. English transl.Russian Math. Surveys,27, no 4 (1972), 21–69.

    Google Scholar 

  20. S. Smale, Notes on differentiable dynamical systems,Proc. Sympos. Pure Math.,14, A.M.S., Providence, R. I. (1970), pp. 277–287.

    Google Scholar 

  21. J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie,Séminaire Bourbaki, exposé no 482 (1976), Lecture Notes in Math., no 567, Berlin, Springer, 1977.

    Google Scholar 

  22. A. Weil,Basic number theory, Berlin, Springer, 1973, 2nd ed.

    MATH  Google Scholar 

Download references

Authors

Additional information

Dedicated to the memory of Rufus Bowen

About this article

Cite this article

Ruelle, D. Ergodic theory of differentiable dynamical systems. Publications Mathématiques de L’Institut des Hautes Scientifiques 50, 27–58 (1979). https://doi.org/10.1007/BF02684768

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684768

Keywords