Skip to main content
Log in

Accuracy of the inverse womersley method for the calculation of hemodynamic variables

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We have studied the accuracy of the inverse Womersley method, a linear theory for the calculation of hemodynamic variables from measured volumetric flow rate or center-line velocity, for two canine arteries with different degrees of arterial wall motion and taper. The results from the linear theory are compared with the estimates from the nonlinear theory of Ling and Atabek for a canine thoracic aorta and femoral artery. For the thoracic aorta, the linear theory underestimates the mean wall shear stress by as much as 77%, when compared with the nonlinear theory. For the femoral artery, on the other hand, the mean wall shear stress value is underestimated by as much as 23%. Estimates of other hemodynamic variables show similar discrepancies between the nonlinear and linear theories. Thus, the inverse Womersley method does not give accurate estimates of hemodynamic quantities. This failure results from the neglect of convective accelerations due to arterial wall motion and taper, with the neglect of arterial taper leading to the largest errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anliker, M., M. Casty, P. Friedli, R. Kubli, and H. Keller. Noninvasive measurement of blood flow. In: Cardiovascular flow dynamics and measurements, edited by N. H. C. Hwang and N. A. Norman. Baltimore: University Park Press, 1977, pp. 43–88.

    Google Scholar 

  2. Belardinelli, E., and S. Cavalcanti. A new nonlinear two-dimensional model of blood motion in tapered and elastic vessels.Comput. Biol. Med. 21:1–13, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Cezeaux, J. L. Calculation of velocity profiles in arteries. Troy, NY: Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Ph.D. Thesis, 1989.

    Google Scholar 

  4. Diamond, S. L., S. G. Eskin, and L. V. McIntire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells.Science 243:1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Dutta, A., D. M. Wang, and J. M. Tarbell. Numerical analysis of flow in an elastic artery model.J. Biomech. Eng. 114:26–33, 1992.

    PubMed  CAS  Google Scholar 

  6. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. V. Ives. Flow effects on prostacyclin production by cultured human endothelial cells.Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Friedman, M. H., G. M. Hutchings, C. B. Bargeron, O. J. Deters, and F. F. Mark. Correlation of human arterial morphology with hemodynamic measurements in arterial casts.J. Biomech. Eng. 103:204–207, 1981.

    PubMed  CAS  Google Scholar 

  8. Imaeda, K., and F. O. Goodman. Analysis of non-linear pulsatile blood flow in arteries.J. Biomech. 13:1007–1022, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery.Am. J. Physiol. 239:H14-H21, 1980.

    PubMed  CAS  Google Scholar 

  10. Khayutin, V. M., A. M. Melkumyants, A. N. Rogoza, E. S. Veselova, S. A. Balashov, and V. P. Nikolsky. Flow-induced control of arterial lumen.Acta Physiol. Hung. 68: 241–251, 1986.

    PubMed  CAS  Google Scholar 

  11. L'Italien, G. J., I. G. Kidson, J. Megerman, and W. M. Abbott. In vivo measurement of blood vessel wall thickness.Am. J. Physiol. 237:H265-H268, 1979.

    PubMed  Google Scholar 

  12. Li, J. K.-J., J. Melbin, R. A. Riffle, and A. Noordergraaf. Pulse wave propagation.Circ. Res. 49:442–452, 1981.

    PubMed  CAS  Google Scholar 

  13. Ling, S. C., and H. B. Atabek. A nonlinear analysis of pulsatile flow in arteries.J. Fluid Mech. 55:493–511, 1972.

    Article  Google Scholar 

  14. Ling, S. C., H. B. Atabek, W. G. Letzing, and D. J. Patel. Nonlinear analysis of aortic flow in living dogs.Circ. Res. 33:198–212, 1973.

    PubMed  CAS  Google Scholar 

  15. Lou, Z., W.-J. Yang, and P. D. Stein. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.J. Biomech. 26:383–390, 1993.

    Article  PubMed  CAS  Google Scholar 

  16. McDonald, D. A. Blood Flow in Arteries. London: Edward Arnold, Ltd., 1974, 496 pp.

    Google Scholar 

  17. Megerman, J., J. E. Hasson, D. F. Warnock, G. J. L'Italien, and W. M. Abbott. Noninvasive measurements of nonlinear arterial elasticity.Am. J. Physiol. 250:H181-H188, 1986.

    PubMed  CAS  Google Scholar 

  18. Reneman, R. S., T. van Merode, P. Hick, and A. P. G. Hoeks. Cardiovascular applications of multi-gate pulsed Doppler systems.Ultrasound Med. Biol. 12:357–370, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Tarbell, J. M., L. J. Chang, and T. M. Hollis. A note on the wall shear stress in the aorta.J. Biomech. Eng. 104:343–345, 1982.

    PubMed  CAS  Google Scholar 

  20. Tarbell, J. M. Influence of blood rheology and vessel wall motion on arterial fluid mechanics.Appl. Mech. Rev. 47:S291-S295, 1994.

    Article  Google Scholar 

  21. Tsangaris, S., and N. Stergiopulos. The inverse Womersley problem for pulsatile flow in straight rigid tubes.J. Biomech. 21:263–266, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known.J. Physiol. 127:553–563, 1955.

    PubMed  CAS  Google Scholar 

  23. Womersley, J. R. An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright Air Development Center Technical Report WADC-TR56-614, 1957.

  24. Ye, G.-F., T. W. Moore, and D. Jaron. Incorporating vessel taper and compliance properties in Navier-Stokes based blood flow models.Ann. Biomed. Eng. 21:97–106, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshizumi, M., H. Kusihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yazaki. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells.Biochem. Biophys. Res. Comm. 161:859–864, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cezeaux, J.L., van Grondelle, A. Accuracy of the inverse womersley method for the calculation of hemodynamic variables. Ann Biomed Eng 25, 536–546 (1997). https://doi.org/10.1007/BF02684193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684193

Keywords

Navigation