Skip to main content
Log in

The effect of carbon content on solidification of steel in the continuous casting mold

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

This investigation examines the effect of steel carbon content on microsegregation and strand deformation during the first stage of solidification in the continuous casting mold. Calculation of microsegregation for phosphorus indicates a minimum at 0.10 wt pct C, and a maximum around 0.25 wt pct C of the decrease in solidus temperature. This leads to very different effective shell thicknesses and determines whether or not the strand shell can contract. As a result, mainly steels around 0.10 wt pct C can produce a finite gap in the early stages of strand formation, explaining the pronounced waviness of the surface of such steels. On the other hand, steels with more than 0.20 wt pct C are forced by ferrostatie pressure to remain in contact with the mold wall leading to uniform shell growth and smooth strand surfaces but also undergoing enhanced mold friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. S. N. Singh and K. E. Blazek:J. Met., 1974, vol. 26, pp. 17–27.

    Google Scholar 

  2. R. Jauch:Stahl Eisen, 1978, vol. 98, pp. 244–54.

    CAS  Google Scholar 

  3. S. N. Singh and K. E. Blazek:Open Hearth Proc. AIME, 1976, vol. 59, pp. 264–83.

    CAS  Google Scholar 

  4. V. A. Ulyanov, E. M. Kitaev, and A. A. Skvortsov:Steel in the USSR, vol. 8, pp. 617–19, Metals Society, London, 1978.

    Google Scholar 

  5. K. Saito and M. Tate:Open Hearth Proc. AIME, 1973, vol 56, pp. 238–67.

    CAS  Google Scholar 

  6. A. Grill and J. K. Brimacombe:Ironmaking Steelmaking, 1976, vol. 3, pp. 76–79.

    CAS  Google Scholar 

  7. H. Jacobi:Stahl Eisen, 1976, vol. 96, pp. 964–68.

    CAS  Google Scholar 

  8. Y. Sugitani and M. Nakamura:Tetsu to Hagane, 1979, vol. 65, pp. 1702–11.

    CAS  Google Scholar 

  9. N. N. Guglin and B. B. Gulyaev:Stal Engl., pp. 679–84, The Iron and Steel Institute, London, 1961.

    Google Scholar 

  10. C. J. Adams:Open Hearth Proc. AIME, 1971, vol. 54, pp. 290–302.

    CAS  Google Scholar 

  11. W. Kurz:Solidification Processes and Properties of Castings, Proc. 5th Int. Conf. Vacuum Met. and ESR, Leybold-Heraeus, Hanau, 1976, pp. 5–14.

    Google Scholar 

  12. Ö. Hammar and G. Grünbaum:Scand. J. Met., 1974, vol. 3, pp. 11–20.

    Google Scholar 

  13. H. Fredriksson:Scand. J. Met., 1976, vol. 5, pp. 27–32.

    CAS  Google Scholar 

  14. H. D. Brody and M. C. Flemings:Trcns. TMS-AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  15. D.H. Kirkwood and D.J. Evans:The Solidification of Metals, pp. 108–11, The Iron and Steel Institute, London, 1968.

    Google Scholar 

  16. J. Fridberg, L.-E. Törndahl, and M. Hillert:Jernkontorets Ann., 1969, vol. 153, pp. 263–76.

    CAS  Google Scholar 

  17. J. Chipman:Basic Open Hearth Steelmaking, pp. 621–90, AIME, New York, 1951.

    Google Scholar 

  18. Y. K. Chuang, W. Wepner, and K. Schwerdtfeger:Arch. Eisen-hüttenwes., 1973, vol. 44, pp. 243–50.

    CAS  Google Scholar 

  19. Y. K. Chuang, D. Reinisch, and K. Schwerdtfeger:Met. Trans. A, 1975, vol. 6A, pp. 235–38.

    Article  Google Scholar 

  20. P. J. Wray:Met. Trans., 1974, vol. 5, pp. 2602–03.

    Article  CAS  Google Scholar 

  21. M. Wolf and W. Kurz:Solidification and Casting of Metals, pp. 287–94, The Metals Society, London, 1979.

    Google Scholar 

  22. H. Fredriksson and M. Thegerström:Scand. J. Met., 1979, vol. 8, pp. 232–40.

    CAS  Google Scholar 

  23. A. Suzuki, T. Suzuki, Y. Nagaoka, and Y. Iwata:J. Jpn. Inst. Met., 1968, vol. 32, pp. 1301–05.

    CAS  Google Scholar 

  24. T. W. Clyne and G. J. Davies:Solidification and Casting of Metals, pp. 275–78, The Metals Society, London, 1979.

    Google Scholar 

  25. R. Vogel:Arch. Eisenhüttenwes., 1929, vol. 3, pp. 369–81.

    CAS  Google Scholar 

  26. M. Künkele:Mitt. Kaiser-Wilhelm-Inst. Eisenforsch., 1930, vol. 12, pp. 23–31.

    Google Scholar 

  27. M. Hansen and K. Anderko:Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, 1958.

    Google Scholar 

  28. F. A. Shunk:Constitution of Binary Alloys, Second Supplement, McGraw-Hill, New York, 1969.

    Google Scholar 

  29. M. Findeis and H. G. Müller:Berg- und Hüttenmaenn. Mh., 1969, vol. 114, pp. 115–22.

    Google Scholar 

  30. F. Richter:Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen, Sonderber. No. 8, Verlag Stahleisen, Düsseldorf, 1973.

    Google Scholar 

  31. P. J. Wray:Met. Trans. A, 1976, vol. 7A, pp. 1621–27.

    Article  CAS  Google Scholar 

  32. A Guide to the Solidification of Steels, Jernkontoret, Stockholm, 1977.

  33. M. Wolf: Dr.-Thesis, Swiss Federal Institute of Technology, Lausanne, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M., Kurz, W. The effect of carbon content on solidification of steel in the continuous casting mold. Metall Trans B 12, 85–93 (1981). https://doi.org/10.1007/BF02674761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674761

Keywords

Navigation