Skip to main content
Log in

Low temperature dopant activation of BF2 implanted silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Boron activation and carrier mobility were measured after low temperature furnace heat treatments, in silicon layers implanted with BF +2 ions at 60 keV and at fluence in the 1 − 5 × 1015 ions cm−2 range. These quantities were correlated with boron and fluorine chemical depth profiles obtained with secondary ion mass spectrometry (SIMS), and with the lattice defects revealed by transmission electron microscopy (TEM). High dopant activation, well above the extrapolated boron solid solubility, was found for all the fluences investigated after a thermal treatment of 20 min at 600‡ C. In the high fluence implanted samples, the solid phase epitaxial regrowth of the amorphous layer induces a severe fluorine redistribution which causes the formation of a defective band at the sample surface containing microtwins and small precipitates; a decrease in both the activated dopant concentration and carrier mobility was found in this region. The comparison with dopant activation data obtained in samples diffused at higher temperature (from 900 to 1000‡ C) shows that twins are electrically active only when they are decorated by isolated impurities and/or in presence of very small precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Liu and W. G. Oldham, IEEE Electron Devices Lett.4, 59 (1983).

    Google Scholar 

  2. M. E. Lunnon, J. T. Chen and J. E. Baker, J. Electrochem. Soc.132, 2473 (1985).

    Article  CAS  Google Scholar 

  3. S. S. Cohen, J. F. Norton, E. F. Kock and G. J. Weisel, J. Appl. Phys.57, 1200 (1985).

    Article  CAS  Google Scholar 

  4. T. E. Seidel, IEEE Electron Devices Lett.4, 353 (1883).

    Google Scholar 

  5. R. G. Wilson, J. Appl. Phys.54, 6879 (1983).

    Article  CAS  Google Scholar 

  6. C. Carter, W. Maszara, D. K. Sadana, G. A. Rozgonyi, J. Liu and J. Wortman, Appl. Phys. Lett.44, 459 (1984).

    Article  CAS  Google Scholar 

  7. G. Queirolo, P. Caprara, L. Meda, G. Ottaviani, M. Anderle and D. Bassi, Nucl. Instrum. MethodsB19, 329 (1987).

    Google Scholar 

  8. G. Queirolo, P. Caprara, L. Meda, G. Guareschi, M. Anderle, G. Ottaviani and A. Armigliato, J. Electrochem. Soc.134, 2905 (1987).

    Article  CAS  Google Scholar 

  9. G. Queirolo, L. Meda, C. Bresolin, M. Anderle and R. Canteri, J. Electrochem. Soc.135, 111 (1988).

    Article  Google Scholar 

  10. H. Matsumura, Y. Nakagome and S. Furukava, Appl. Phys. Lett.36, 439 (1989).

    Article  Google Scholar 

  11. S. Prussin, D. I. Margolese and R. N. Tauber, J. Appl. Phys.54, 2316 (1983).

    Article  CAS  Google Scholar 

  12. G. F. Cerofolini and L. Meda, Phys. Rev. B36, 5131 (1987).

    Article  CAS  Google Scholar 

  13. T. Sands, J. Washburn, R. Gronsky, W. Maszara, D. K. Sadana and G. A. Rozgonyi, Appl. Phys. Lett.45, 982 (1984).

    Article  CAS  Google Scholar 

  14. J. Narayan, O. W. Holland, W. H. Christie and J. J. Wortman, J. Appl. Phys.57, 2709 (1985).

    Article  CAS  Google Scholar 

  15. N. Chang Tung J. Electrochem. Soc.132, 914 (1985).

    Article  CAS  Google Scholar 

  16. M. E. Lunnon, J. T. Chen and J. E. Baker, Appl. Phys. Lett.45, 1056 (1984).

    Article  CAS  Google Scholar 

  17. M. Y. Tsai, D. S. Day, B. G. Streetman, P. Williams and C. A. Evans, J. Appl. Phys.50, 188 (1979).

    Article  CAS  Google Scholar 

  18. W. Vandervorst, D. C. Houghton, F. R. Shepherd, M. L. Swanson, H. H. Plattner and G. J. C. Carpenter, Can. J. Phys.63, 863 (1985).

    CAS  Google Scholar 

  19. C. W. Nieh and L. J. Chen, J. Appl. Phys.60, 3114 (1986).

    Article  CAS  Google Scholar 

  20. C W. Nieh and L. J. Chen, J. Appl. Phys. 60, 3546 (1986).

    Article  CAS  Google Scholar 

  21. C. W. Nieh and L. J. Chen, J. Appl. Phys.62, 4421 (1987).

    Article  CAS  Google Scholar 

  22. Y. Kim, H. Z. Massoud and R. B. Fair, Appl. Phys. Lett.53, 2197 (1988).

    Article  CAS  Google Scholar 

  23. M. Y. Tsay and B. G. Streetman, J. Appl. Phys.50, 183 (1979).

    Article  Google Scholar 

  24. K. B. Wolfstirn, Phys. Chem. Solids16, 279 (1960).

    Article  CAS  Google Scholar 

  25. M. Y. Tsay, B. G. Streetman, P. Williams and C. A. Evans, Appl. Phys. Lett.32, 144 (1978).

    Article  Google Scholar 

  26. A. Garulli, A. Armigliato and M. Finetti, Ultramicroscopy26, 295 (1988).

    Article  Google Scholar 

  27. M. Anderle, R. Canteri, G. Queirolo and D. Robba, SIMS VI, Versailles 1987.

  28. A. Armigliato, D. Nobili, P. Ostoja, M. Servidori and S. Solmi, in Semiconductor Silicon 1977, eds. H. R. Huff and E. Stirtl, Electrochemical Society, Inc., 1977, p. 638.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queirolo, G., Bresolin, C., Robba, D. et al. Low temperature dopant activation of BF2 implanted silicon. J. Electron. Mater. 20, 373–378 (1991). https://doi.org/10.1007/BF02670886

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670886

Key words

Navigation