Skip to main content
Log in

The effect of matrix microstructure on cyclic response and fatigue behavior of particle- reinforced 2219 aluminum: Part I. room temperature behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10−4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Allison and G.S. Cole:JOM, 1993, vol. 45, pp. 19–24.

    CAS  Google Scholar 

  2. J.E. Allison and J.W. Jones: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, pp. 269–94.

    Google Scholar 

  3. J.N. Van de Polder: Master’s Thesis, The University of Michigan, Ann Arbor, MI, 1988.

  4. P.K. Sharp, B.A. Parker, and J.R. Griffiths: inProc. 4th Int. Conf. on Fatigue and Fatigue Thresholds, H. Kitagawa and T. Tanaka, eds., MCE Publishing, Birmingham, United Kingdom, 1990, pp. 875–80.

    Google Scholar 

  5. W. Yu, J. Yuan, J. Wang, and Z. Wang: inProc. 4th Int. Conf. on Fatigue and Fatigue Thresholds, H. Kitagawa and T. Tanaka, eds., MCE Publishing, Birmingham, United Kingdom, 1990, pp. 899–904.

    Google Scholar 

  6. J.J. Bonnen, C.P. You, J.E. Allison, and J.W. Jones: inProc. 4th Int. Conf. on Fatigue and Fatigue Thresholds, H. Kitagawa and T. Tanaka, eds., MCE Publishing, Birmingham, United Kingdom, 1990, pp. 887–92.

    Google Scholar 

  7. J.J. Bonnen, J.E. Allison, and J.W. Jones:Metall. Trans. A, 1991, vol 22A, pp. 1007–19.

    CAS  Google Scholar 

  8. G.M. Vyletel, J.E. Allison, and D.C. Van Aken:Metall. Trans. A, 1993, vol. 24A, pp. 2545–57.

    CAS  Google Scholar 

  9. J.K. Shang and R.O. Ritchie: inMetal Matrix Composites, R.J. Arsenault and R.K. Everett, eds., Academic Press, Boston, MA, 1989.

    Google Scholar 

  10. G.M. Vyletel, D.C. Van Aken, and J.E. Allison:Scripta Metall. Mater., 1991, vol. 25, pp. 2405–10.

    Article  CAS  Google Scholar 

  11. C. Liu: Ph.D. Dissertation, Case Western Reserve University, Cleveland, OH, 1992.

  12. A.R. Krause and C. Laird:Mater. Sci. Eng., 1967–68, vol. 2, pp. 331- 47.

    Google Scholar 

  13. J.M. Finney:Mater. Sci. Eng., 1970, vol. 6, pp. 55–65.

    Article  CAS  Google Scholar 

  14. B.K. Park, G. Lütjering, and S. Weissmann: Z.Metallkd., 1971, vol. 62, pp. 721–26.

    CAS  Google Scholar 

  15. M.C. Lu and S. Weissmann:Mater. Sci. Eng., 1978, vol. 32, pp. 41- 53.

    Article  CAS  Google Scholar 

  16. G.M. Vyletel: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 1994.

  17. G. Lütjering, T. Hamajima, and A. Gysler: inProc. 4th Int. Conf. on Fracture, D.M.R. Taplin, ed., University of Waterloo Press, Waterloo, ON, Canada, pp. 7–16.

  18. R.E. Sanders and E.A. Starke, Jr.:Mater. Sci. Eng., 1977, vol. 28, pp. 53–68.

    Article  CAS  Google Scholar 

  19. A.R.C. Westwood:Metall. Trans. B, 1988, vol. 19B, pp. 155–64.

    CAS  Google Scholar 

  20. D.C. Van Aken, P.E. Krajewski, G.M. Vyletel, J.E. Allison, and J.W. Jones:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1395–1405.

    Article  Google Scholar 

  21. C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, pp. 159- 74.

    Article  CAS  Google Scholar 

  22. C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, pp. 141- 57.

    Article  CAS  Google Scholar 

  23. S. Suresh:Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991, p. 41.

    Google Scholar 

  24. L.C. Davis and J.E. Allison:Metall. Trans. A, 1993, vol. 24A, pp. 2487–96.

    CAS  Google Scholar 

  25. J.W. Hatch:Aluminum—Properties and Physical Metallurgy, ASM INTERNATIONAL, Metals Park, OH, 1984.

    Google Scholar 

  26. A. Renard, A.S. Cheng, R. De La Veaux, and C. Laird:Mater. Sci. Eng, 1983, vol. 60, pp. 113–20.

    Article  Google Scholar 

  27. E.A. Starke, Jr. and G. Lütjering: inFatigue and Microstructure, T.H. Sanders and E.A. Starke, eds., ASM, Metals Park, OH, 1979, pp. 205- 43.

    Google Scholar 

  28. D.J. Morrison, V. Chopra, and J.W. Jones:Scripta Metall, 1991, vol. 25, pp. 1299–1304.

    Article  CAS  Google Scholar 

  29. A.W. Bowen, M. Ardakani, and F.J. Humphreys: inMetal Matrix Composites—Processing, Microstructure and Properties, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1991, pp. 241–46.

    Google Scholar 

  30. J.N. Hall: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 1994.

  31. M. Peters and G. Lütjering:Z Metallkd., 1976, vol. 67, pp. 811–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Research Assistant with the Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109

This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994 in San Francisco, California, under the auspices of the Joint TMS-SMD/ASM-MSD Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyletel, G.M., Allison, J.E. & Van Aken, D.C. The effect of matrix microstructure on cyclic response and fatigue behavior of particle- reinforced 2219 aluminum: Part I. room temperature behavior. Metall Mater Trans A 26, 3143–3154 (1995). https://doi.org/10.1007/BF02669443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669443

Keywords

Navigation