Skip to main content
Log in

Deformation of pearlite

  • Symposium on Mechanical-Thermal Processing and Dislocation Substructure Strengthening
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Pearlite with its lamellae oriented mainly parallel to the longitudinal direction was prepared by Bolling's method of transformation in a steep temperature gradient. The Fe-0.7 pct Mn-0.9 pct C pearlite was drawn into wire and also into strip in dies designed to minimize macroscopically nonuniform deformation. Cross sections of the drawn wires and strip were examined by conventional and high-voltage transmission electron microscopy and were analyzed by quantitative metallography for a) average interlamellar spacing, b) distribution of interlamellar spacings, and c) orientation relationship between the cementite lamellae and the slip systems in the ferrite. The strength of pearlite is proportional to the reciprocal square root of the average interlamellar spacing, and the proportionality constant analogous to the Hall-Petch constant (k) is related to the strength of the cementite lamellae. If the stress for the propagation of slip through the cementite is assumed constant, a Hall-Petch type of equation can be derived for the strengthening of the pearlite against slip in the ferrite by piled-up groups of dislocations. Evidence for the plastic deformability of cementite is presented; sufficiently thin cementite plates were fully plastic. The exponential strain hardening of drawn pearlitic wires and of rolled pearlite is explained in terms of locally inhomogenous deformation revealed by the lack of fragmentation of the lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Embury and R. M. Fisher:Acta Met., 1966, vol. 14, p. 147.

    Article  CAS  Google Scholar 

  2. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, p. 623.

    CAS  Google Scholar 

  3. H. J. Rack and M. Cohen:Mater. Sci. Eng., 1970, vol. 6, p. 320.

    Article  CAS  Google Scholar 

  4. G. Langford, P. K. Nagata, R. J. Sober, and W. C. Leslie:Met. Trans., 1972, vol. 3, p. 1843.

    CAS  Google Scholar 

  5. G. Langford and M. Cohen:Proc. 2nd Int. Conf. on the Strength of Metals and Alloys, p. 475, ASM, Cleveland, Oh., 1970.

    Google Scholar 

  6. G. Langford and M. Cohen:Met. Trans. A, 1975, vol. 6A, p. 901.

    CAS  Google Scholar 

  7. V. M. Kardonskii, G. V. Kurdyumov, and M. D. Perkas:Metalloved. Term. Obrab. Metal., February, 1964, no. 2, p. 2.

    Google Scholar 

  8. A. H. Holtzman, J. C. Danko, and R. D. Stout:Trans. TMS-AIME, 1958, vol. 212, p. 475.

    Google Scholar 

  9. B. R. Butcher and H. R. Pettit:J. Iron Steel Inst., 1966, vol. 204, p. 469.

    CAS  Google Scholar 

  10. J. T. Barnby and M. R. Johnson:Metal Sci. J., 1969, vol. 3, p. 155.

    Google Scholar 

  11. T. Takahashi and M. Nagumo:Trans. Jap. Inst. Metals, 1970, vol. 11, p. 113.

    CAS  Google Scholar 

  12. K. L. Maurer and D. H. Warrington:Phil. Mag., 1967, vol. 15, p. 321.

    CAS  Google Scholar 

  13. A. S. Keh:Acta Met., 1963, vol. 11, p. 1101.

    Article  CAS  Google Scholar 

  14. K. E. Puttick:J. Iron Steel Inst., 1957, vol. 185, p. 161.

    Google Scholar 

  15. M. Kaldor:Acta Met., 1962, vol. 10, p. 887.

    Article  Google Scholar 

  16. F. B. Pickering:Iron and Steel, 1965 vol. 38, p. 110.

    CAS  Google Scholar 

  17. M. A. P. Dewey and G. W. Briers:J. Iron Steel Inst., 1966, vol. 204, p. 102.

    CAS  Google Scholar 

  18. R. A. Grange: Unpublished work at E. C. Bain Laboratory, U.S. Steel Corporation.

  19. K. L. Maurer and R. Rossegger:Berg Huettenmaenn. Monatsh., 1966, vol. 111, p. 412.

    CAS  Google Scholar 

  20. R. C. Gleen, G. Langford, and A. S. Keh:Trans. ASM, 1969, vol 62, p. 285.

    Google Scholar 

  21. V. K. Babich, V. A. Pirogov, and L. A. Mikhailets:Zavod Lab., 1970, vol. 36, p. 710.

    Google Scholar 

  22. G. Langford:Met. Trans., 1970, vol. 1, p. 465.

    CAS  Google Scholar 

  23. E. J. Fasiska and G. A. Jeffrey:Acta Crystallogr., 1965, vol. 19, p. 463.

    Article  CAS  Google Scholar 

  24. S. S. Brenner:Fiber Composite Materials, p. 11. ASM, Cleveland, Oh., 1965.

    Google Scholar 

  25. Y. T. Chou:Phys. Status Solidi, 1966, vol. 17, p. 509.

    CAS  Google Scholar 

  26. V. K. Kritskaia, N. M. Nodia, and Yu. A. Osipiyan:Fiz. Metal. Metalloved., 1958, vol. 6, p. 177.

    Google Scholar 

  27. G. Langford and M. Cohen:Met. Trans., 1970, vol. 1, p. 1478.

    CAS  Google Scholar 

  28. Y. T. Chou:Can. J. Phys., 1967, vol. 45, p. 559.

    Google Scholar 

  29. J. C. M. Li and Y. T. Chou:Met. Trans., 1970, vol. 1, p. 1145.

    Google Scholar 

  30. J. Gurland: Presented at ASTM Meeting on Quantitative Metallog., Brown University, Division of Engineering, Providence, R.I., June 1971.

  31. R. W. Armstrong, Y. T. Chou, R. M. Fisher, and N. Louat:Phil. Mag., 1966, vol. 14, p. 943.

    CAS  Google Scholar 

  32. S. Karashima and T. Sakuma:Trans. Jap. Inst. Metals, 1968, vol. 9, p. 63.

    CAS  Google Scholar 

  33. G. F. Bolling and R. H. Richmann:Met. Trans., 1970, vol. 1, p. 2095.

    Article  CAS  Google Scholar 

  34. R. C. Glenn and R. D. Schoone:Rev. Sci. Instrum., 1964, vol. 34, p. 1223.

    Article  Google Scholar 

  35. W. F. Hosford, Jr.:Trans. TMS-AIME, 1964, vol. 230, p. 12.

    CAS  Google Scholar 

  36. See, for example, R. Hill:The Mathematical Theory of Plasticity, p. 50, Clarendon Press, Oxford, 1960.

    Google Scholar 

  37. K. Brown: Oral presentation at 1970 ASM/AIME Fall Meeting, Cleveland, Ohio, Kaiser Aluminum and Chemical Corporation Center for Technology.

  38. See, for example, W. Johnson, P. B. Mellor:Plasticity for Mechanical Engineers, p. 297. D. Van Nostrand Co., Ltd., New York, N.Y., 1962.

    Google Scholar 

  39. A. P. Green and R. Hill:J. Mech. Phys. Solids, 1952, vol. 1, p. 31.

    Article  Google Scholar 

  40. W. Johnson and P. B. Mellor:op cit.

    Google Scholar 

  41. W. Johnson and P. B. Mellor:op cit.

    Google Scholar 

  42. J. Gil Sevillano:Mater. Sci. Eng., 1975, vol. 21, p. 221.

    Article  CAS  Google Scholar 

  43. A. K. Chakrabarti and J. W. Spretnak:Met Trans. A, 1975, vol. 6A, p. 733, 737.

    Google Scholar 

  44. E. Aernoudt and J. Gil Sevillano:J. Iron Steel Inst., 1973, vol. 211, p. 718.

    CAS  Google Scholar 

  45. C. S. Barrett and T. B. Massalski:Structure of Metals, 3rd ed., p. 548. McGraw Hill, New York, N.Y., 1966.

    Google Scholar 

  46. W. A. Backofen:Deformation Processing, p. 253, Addison-Wesley, Reading, Mass., 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Mechanical-Thermal Processing and Dislocation Substructure Strengthening,” held at the Annual Meeting in Las Vegas, Nevada, on February 23, 1976, under the sponsorship of the TMS/IMD Heat Treating Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langford, G. Deformation of pearlite. Metall Trans A 8, 861–875 (1977). https://doi.org/10.1007/BF02661567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661567

Keywords

Navigation