Skip to main content
Log in

The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to compute the changes in the austenite grain size during rolling in a hot-strip mill. The heat-transfer model described in the first of this series of papers has been employed to calculate the temperature distribution through the thickness which serves as a basis for the microstructure model. Single-and double-hit compression tests have been conducted at temperatures of 900 °C, 850°C, 950 °C, and 875 °C on 0.34 and 0.05 pct carbon steels to determine the degree of recrystallization by metallographic evaluation of quenched samples and by measuring the magnitude of fractional softening. The Institut de Recherches de la Sidérurgie Francaise, (IRSID) Saint Germain-en-Laye, France equation has been found to yield the best characterization of the observed recrystallization kinetics. The equations representing static recrystallization kinetics, recrystallized grain size, and grain growth kinetics have been incorporated in the model. The principle of additivity has been invoked to permit application of the isothermal recrystallization data to the nonisothermal cooling conditions. The model has been validated by comparing predicted austenite grain sizes with measurements made on samples quenched after one to four passes of rolling on the CANMET pilot mill. The austenite grain size evolution during rolling of a 0.34 pct carbon steel on Stelco’s Lake Erie Works (LEW) hot-strip mill has been computed with the aid of the model. The grain size decreased from an initial value of 180μm to 35μm in the first pass due to the high reduction of 46 pct. The changes in austenite grain size in subsequent passes were found to be small in comparison because of the lower per pass reductions. It has been shown that the equation employed to represent grain growth kinetics in the interstand region has a significant influence on the computed final grain size. Altering the rolling schedule had a negligible influence on the final grain size for a given finished gage. A 200°C increase in entry temperature to the mill resulted in a 20μm increase in final grain size, which is significant. This can be attributed to increased grain growth at the higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Sellars:Proc. Int. Conf. on Hot Working and Forming Processes, July 17–20, 1980, C.M. Sellars and C.J. Davies, eds., The Metals Society of London, London, pp. 3–15.

    Google Scholar 

  2. C.M. Sellars:Mater. Sci. Technol., 1985, vol. 1, pp. 352–32.

    Google Scholar 

  3. J.H. Beynon, P.R. Brown, S.I. Mizban, A.R.S. Ponter, and C.M. Sellars:Proc. of NUMIFORM Conf., Gothenburg, Sweden, Aug. 25–29, 1986, K. Mattiasson, A. Samuelsson, R.D. Wood, and O.C Zienkiewicz, eds., A.A. Balkerna, Rotterdam, Holland, pp. 213–18.

  4. C.M. Sellars and J.A. Whiteman:Met. Sci., 1979, Mar.–Apr., pp. 187–94.

  5. C.M. Sellars:Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC 88, Tokyo, June 6–10, 1988, I. Tamura, ed., Iron Steel Inst. Jpn., Tokyo, pp. 448–57.

    Google Scholar 

  6. H. Yada:Proc. Int. Symp. Accelerated Cooling of Rolled Steel, Conf. of Metallurgists, CIM, Winnipeg, MB, Canada, Aug. 24–26, 1987, G.E. Ruddle and A.F. Crawley, eds., Pergamon Press, Canada, pp. 105-20.

    Google Scholar 

  7. T. Senuma and H. Yada:Annealing Processes, Recovery,Recrystallization and Grain Growth, Proc. 7th RisΦ Int. Symp. on Metallurgy and Materials Science, Sept. 8-12, 1986, S.S. Hansen, D. Juul Jensen, T. Lefjers, and B. Ralph, eds., Risθ National Laboratory, Roshilde, Denmark, pp. 547–52.

  8. M. Suehiro, K. Sato, Y. Tsukano, H. Yada, T. Senuma, and Y. Matsumura:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 439–45.

    CAS  Google Scholar 

  9. Y. Saito, T. Enami, and T. Tanaka:Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 1146–55.

    CAS  Google Scholar 

  10. Y. Saito, M. Saeki, M. Nishida, Y. Ito, T. Tanaka, and S. Takizawa:Proc. Int. Conf. on Steel Rolling, Iron Steel Inst. Jpn., Tokyo, Sept. 29–Oct. 4, 1980, pp. 1309–20.

    Google Scholar 

  11. Ch. Perdrix:Characteristic of Plastic Deformation of Metals During Hot Working, Report CECA No. 7210 EA/311, The Institute de Rechearches de la Sidérurgie Francaise (IRSID), Saint Germain-en-Laye, France, 1987.

    Google Scholar 

  12. M.J. Luton and C.M. Sellars:Acta Metall., 1969, vol. 17, pp. 1033–431.

    Article  CAS  Google Scholar 

  13. H.J. McQueen and S. Bergerson:Met. Sci., 1972, vol. 6, pp. 25–29.

    Article  CAS  Google Scholar 

  14. W.J. McG. Tegart and A. Gittins: inThe Hot Deformation of Austenite, J.B. Ballance, ed., AIME, Warrendale, PA, 1977, pp. 1–46.

    Google Scholar 

  15. J.J. Jonas and T. Sakai: inDeformation Processing and Structures, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 185–243.

    Google Scholar 

  16. T. Sakai and J.J. Jonas:Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  17. W. Roberts, A. Sandberg, T. Siwecki, and T. Werlefors:Int. Conf. on Strength of Metals and Alloys, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Toronto, 1985, vol. 2, pp. 1025–30.

    Google Scholar 

  18. M. Saeki, K. Tsunoyama, H. Yoshida, and Y. Ito: Kawasaki Steel, Mizushima Works, Kurashiki, Japan, unpublished research, 1987.

  19. R.A.P. Djaic and J.J. Jonas:J. Iron Steel Inst., 1972, vol. 210, pp. 256–61.

    CAS  Google Scholar 

  20. G. Glover and C.M. Sellars:Metall. Trans., 1972, vol. 3, pp. 2271–80.

    Article  CAS  Google Scholar 

  21. E. Anelli, M. Ghersi, A. Mascanzoni, M. Paolickhi, A. Aprile, F. Granto, G. Lignori and G. Rizzo:HSLA Steels: Metallurgy and Applications, J.M. Gray, T. Ko, Zhang Shouhua, Wu Beorong, and Xie Xishan, eds., ASM, Metals Park, OH, 1986, pp. 693–98.

    Google Scholar 

  22. C.M. Sellars:7th RisΦ Int. Symp. on Annealing Processes-Recovery, Recrystallization and Grain Growth, Denmark, 1986, N. Hansen, D. Juul Jensen, T. Lefjers, and B. Ralph, eds., RisΦ National Laboratory, Roshilde, Denmark, pp. 167–87.

    Google Scholar 

  23. P.J. Campbell, P.D. Hodgson, M. Lee, and R.K. Gibbs:Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC 88, Tokyo, June 6-10, 1988, I. Tamura, ed., Iron Steel Inst. Jpn., Tokyo, pp. 761-8.

  24. S. Licka and J. Wozniak:Kovove Mater., 1982, vol. 20(5), p. 562.

    Google Scholar 

  25. E.B. Hawbolt, J.K. Brimacombe, and B. Chau: The University of British Columbia, Vancouver, BC, Canada, unpublished research, 1989.

  26. C. Devadas, I.V. Samarasekera, and E.B. Hawbolt:Metall. Trans. A, 1991, vol. 22A, pp. 307–19.

    CAS  Google Scholar 

  27. C. Devadas, D. Baragar, G. Ruddle, I.V. Samarasekera, and E.B. Hawbolt:Metall. Trans. A, 1991, vol. 22A, pp. 321–33.

    CAS  Google Scholar 

  28. R. Kopp, M. Cho, and M.M. de Souza:Steel Res., 1988, vol. 59, pp. 161–64.

    CAS  Google Scholar 

  29. E.E. Underwood:Quantitative Stereology, Addison-Wesley Publishing Co., Inc., Reading, MA, 1968.

    Google Scholar 

  30. J.J. Jonas:Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC 88, Tokyo, June 6-10, 1988, I. Tamura, ed., Iron Steel Inst. Jpn., Tokyo, pp. 56–59.

  31. A. Laasraoui, J.J. Jonas, and D.L. Baragar:Proc. Int. Symp. on Steel Product-Process Integration, 20th Annual Conf. of Metallurgists, Halifax, NS, Canada, 1989, McMaster University Press, Hamilton, ON, Canada.

    Google Scholar 

  32. E. Anelli, M. Ghersi, A. Mascanzoni, M. Paolicchio, A. Aprila, A. DeVito, and F. DeMitri:Proc. 7th Int. Conf. on Strength of Metals and Alloys, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Toronto, ON, Canada, 1985, vol. 2, pp. 1031–36.

    Google Scholar 

  33. B. Chau and E.B. Hawbolt: The University of British Columbia, Vancouver, BC, Canada, unpublished research, 1989.

  34. K.E. Magee: M.A.Sc. Thesis, University of British Columbia, Vancouver, BC, Canada, 1986.

  35. E.B. Hawbolt, B. Chau, and J.K. Brimacombe:Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  36. M.B. Kuban, R. Jayaraman, E.B. Hawbolt, and J.K. Brimacombe:Metall. Trans. A, 1986, vol. 17A, pp. 1493–1500.

    CAS  Google Scholar 

  37. A. Silvonen, M. Malinen, and A.S. Kornonen:Scand. J. Metall., 1987, vol. 16, pp. 103–08.

    Google Scholar 

  38. H. Grober:Proc. of NUMIFORM Conf., Gothenburg, Sweden, Aug. 25-29, 1986, K. Matiasson, A. Samuelsson, R.D. Wood, and O.C. Zienkiewicz, eds., A.A. Balkerna, Rotterdam, Holland, pp. 225–29.

  39. T. Sakai, Y. Saito, K. Hirano, and K. Kato:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 1028–35.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, The Centre for Metallurgical Process Engineering, The University of British Columbia Metallurgical transactions a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devadas, C., Samarasekera, I.V. & Hawbolt, E.B. The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution. Metall Trans A 22, 335–349 (1991). https://doi.org/10.1007/BF02656802

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656802

Keywords

Navigation