Skip to main content
Log in

Plasma-particle interactions in plasma spraying systems

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical formulation is presented to represent the interactions between the plasma jet exiting a nontransferred arc plasma torch and injected solid particles. This is a generic problem in plasma spraying operations. The calculations are based on the solution of the two-dimensional equation of motion and the thermal energy balance for the particles. Additionally, the plasma temperatures and velocities in the torch and plume are calculated using a mathematical model based on a simplified set of conservation equations. In the formulation, we allow for departure from continuum conditions, particle vaporization, and temperature gradients within the particles. The calculations are compared with previously published experimental measurements of alumina particles injected into a room-temperature, turbulent air jet and into the plume of a commercial plasma torch operating in a turbulent mode. The second set of experiments provides simultaneous measurement of particle temperature, size, and velocity and so form an excellent basis for testing our model. The comparison of the model and the measurements brings new insight into the behavior of particles in plasma jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. McKelliget, J. Szekely, M. Vardelle, and P. Fauchis:Plasma Chem. Plasma Proc., 1982, vol. 2, p. 317.

    Article  CAS  Google Scholar 

  2. N. El-Kaddah, J. McKelliget, and J. Szekely:Metall. Trans B 1984, vol. 15B, pp. 59–70.

    Article  CAS  Google Scholar 

  3. A.H. Dilawari and J. Szekely:Plasma Chem. Plasma Proc, 1987 vol. 7 (3), p. 317.

    Article  CAS  Google Scholar 

  4. A. Dilawari and J. Szekely:Int. J. Heat Mass Transfer, 1987, vol. 30 (11), p. 2357.

    Article  CAS  Google Scholar 

  5. Y.P. Chyou and E. Pfender:Plasma Chem. Plasma Proc., 1989, vol. 9 (2), pp. 291–328.

    Article  Google Scholar 

  6. J.A. Lewis and W.H. Gauvin:AIChE J., 1973, vol. 19 (5), p. 982.

    Article  CAS  Google Scholar 

  7. M. Vardelle, A. Vardelle, P. Fauchis, and M. Boulos:AIChE J., 1983, vol. 29, p. 236.

    Article  CAS  Google Scholar 

  8. E. Pfender and C. Lee:Plasma Chem. Plasma Proc, 1985, vol. 5 (3), pp. 211–37.

    Article  CAS  Google Scholar 

  9. D. Bhattacharya and W. Gauvin:AIChE J., 1975, vol. 21, p. 879.

    Article  Google Scholar 

  10. N. Sayegh and W. Gauvin:AIChE J., 1979, vol. 25 (3), pp. 523–34.

    Article  Google Scholar 

  11. J. Fiszdon:Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 749–61.

    Article  CAS  Google Scholar 

  12. C. Lee, C. Hsu, and E. Pfender:IUPAC-5th Int. Symp. on Plasma Chemistry, Edinburgh, Scotland, 1981, vol. 2.

  13. R.M. Young and E. Pfender:Plasma Chem. Plasma Proc, 1987, vol. 7 (2), pp. 211–29.

    Article  CAS  Google Scholar 

  14. X. Chen and E. Pfender:Plasma Chem. Plasma Proc, 1982, vol. 2 (2), p. 185.

    Article  CAS  Google Scholar 

  15. P. Fauchais, M. Vardelle, A. Vardelle, and J.F. Coudert:Metall. Trans. B, 1989, vol. 20B, pp. 263–76.

    CAS  Google Scholar 

  16. Y.P. Chyou and E. Pfender:Plasma Chem. Plasma Proc., 1989, vol. 9 (1), pp. 45–71.

    Article  Google Scholar 

  17. X. Chen and E. Pfender:Plasma Chem. Plasma Proc, 1983, vol. 3 (1), p. 97.

    Article  CAS  Google Scholar 

  18. X. Chen and E. Pfender:Plasma Chem. Plasma Proc, 1983, vol. 3 (3), p. 351.

    Article  CAS  Google Scholar 

  19. X. Chen and E. Pfender:Plasma Chem. Plasma Proc, 1982, vol. 2 (3), p. 293.

    Article  CAS  Google Scholar 

  20. E. Bourdin, P. Fauchis, and M. Boulos:Int. J. Heat & Mass Transfer, 1983, vol. 26, p. 567.

    Article  CAS  Google Scholar 

  21. C. Lee and E. Pfender:Plasma Chem. Plasma Proc, 1987, vol. 7 (1), pp. 1–27.

    Article  Google Scholar 

  22. J. Lesinski, B. Mizera-Lesinska, J.C. Fanton, and M.I. Boulos:AIChE J., 1981, vol. 27 (3), pp. 358–64.

    Article  Google Scholar 

  23. G. Trapaga, R. Westhoff, J. Szekely, J. Fincke, and W.D. Swank: inPlasma Processing and Synthesis of Material III, MRS Symp., D. Apelian and J. Szekely, eds., MRS, San Francisco, CA, 1991, vol. 190, pp. 191–99.

    Google Scholar 

  24. J.R. Fincke and W.D. Swank: inPlasma Processing and Synthesis of Material III, MRS Symp., D. Apelian and J. Szekely, eds., MRS, San Francisco, CA, 1991, vol. 190, pp. 207–12.

    Google Scholar 

  25. A.H. Dilawari, J. Szekely, and R. Westhoff:ISIJ International, 1990, vol. 30 (5).

  26. R. Westhoff, J.Szekely, and A.H. Dilawari: inPlasma Processing and Synthesis of Materials III, MRS Symp., D. Apelian and J. Szekely, eds., MRS, San Francisco, CA, 1991, vol. 190, pp. 213–19.

    Google Scholar 

  27. G. Rudinger:Fundamentals of Gas-Particle Flow, Elsevier Scientific Publishing Company, New York, NY, 1980.

    Google Scholar 

  28. F.M. White:Viscous Fluid Flow, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  29. G. Trapaga: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1990.

    Google Scholar 

  30. L. Brewer and A.W. Searcy:J. Am. Chem. Soc., 1951, vol. 73, pp. 5308–14.

    Article  CAS  Google Scholar 

  31. R. Bird, W. Stewart, and E. Lightfoot:Transport Phenomena, J. Wiley & Sons, New York, NY, 1960, p. 511.

    Google Scholar 

  32. J. Crank:Free and Moving Boundary Problems, Clarendon Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  33. V. Voller and M. Cross:J. Heat Mass Transfer, 1981, vol. 24, pp. 545–56.

    Article  Google Scholar 

  34. Technical Note, FLUENT Manual, Creare Incorporated, Hanover, NH, 1987, pp. 4–8.

  35. A.H. Dilawari, J. Szekely, J. Batdorf, R. Detering, and C.B. Shaw:Plasma Chem. Plasma Proc., 1990, vol. 10 (2), pp. 321–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Spray Processing Fundamentals: Coating and Deposition” presented as part of the 1990 TMS Fall Meeting, October 9, 1990, in Detroit, MI, under the auspices of the TMS Synthesis and Analysis in Materials Processing Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westhoff, R., Trapaga, G. & Szekely, J. Plasma-particle interactions in plasma spraying systems. Metall Trans B 23, 683–693 (1992). https://doi.org/10.1007/BF02656448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656448

Keywords

Navigation