Skip to main content
Log in

On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part II. modeling the weld pool and comparison with experiments

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

By combining a mathematical model of the welding arc and of the weld pool, calculations are presented to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporiza-tion. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T.C. Choo, J. Szekely, and R.C. Westhoff:Metalt. Trans. B, 1992, vol. 23B, pp. 357–69.

    Article  Google Scholar 

  2. G.M. Oreper and J. Szekely:Metall. Trans. A, 1987, vol. 18A, pp. 1325–32.

    Article  Google Scholar 

  3. T. Zacharia, A.H. Eraslan, D. Aidun, and S.A. David:Metall. Trans. B, 1989, vol. 20B, pp. 645–59.

    Article  Google Scholar 

  4. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67, pp. 53s-62s.

    Google Scholar 

  5. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J., 1989, vol. 68, pp. 499s-509s.

    Google Scholar 

  6. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J., 1989, vol. 68, pp. 510s-519s.

    Google Scholar 

  7. S. Kou and Y.H. Wang:Weld. J. 1986, vol. 65, pp. 63s-70s.

    Google Scholar 

  8. FL0W-3D: Computational Modelling Power for Scientists and Engineers, Document FSI-88-00-1, Flow Science, Inc., Los Alamos, NM, 1988.

  9. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press. New York, NY, 1979, pp. 178–85.

    Google Scholar 

  10. R.T.C. Choo and J. Szekely:Weld. J., 1992, vol. 71, pp. 77s-93s.

    Google Scholar 

  11. A. Block-Bolten and T.W. Eagar:Metall. Trans. B, 1984, vol. 15B, pp. 461–69.

    Article  Google Scholar 

  12. J. McKelliget and J. Szekely:Metall. Trans. A, 1986, vol. 17A, pp. 1139–48.

    Article  Google Scholar 

  13. W.M. Rosenhow and J.P. Hartnett:Handbook of Heat Transfer, McGraw-Hill, New York, NY, 1973, pp. 8–126.

    Google Scholar 

  14. J.G. Marvin and G.S. Deiwert:Convective Heat Transfer in Planetary Gases, NASA Tech. Rept. R-224, 1965.

  15. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley, New York, NY, 1960, pp. 508–13.

    Google Scholar 

  16. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.

    Google Scholar 

  17. P. Sahoo, T. DebRoy, and M.J. McNallan:Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    Article  Google Scholar 

  18. OH. Nestor:J. Appl. Phys., 1962, vol. 33, pp. 1638–48.

    Article  Google Scholar 

  19. H.G. Kraus:Weld. J., 1989, vol. 68, pp. 269s-279s.

    Google Scholar 

  20. T. Zacharia, S.A. David, J.M. Vitek, and H.G. Kraus: Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 1990.

  21. R.T.C. Choo, J. Szekely, and R.C. Westhoff:Weld. J., 1990, vol. 66, pp. 346s-361s.

    Google Scholar 

  22. R.C. Westhoff: S.M. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1989.

    Google Scholar 

  23. D.B. Spalding:J. Mathematics and Computers in Simulation, 1981, vol.XIII. p. 267.

    Article  Google Scholar 

  24. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington, DC, 1980.

    Google Scholar 

  25. D.W. Walsh and W.F. Savage:Weld J., 1985, vol. 64, pp. 59s-62s.

    Google Scholar 

  26. M.L. Lin and T.W. Eagar:Weld. J., 1985, vol. 64, pp. 163s-169s.

    Google Scholar 

  27. M. Lu and S. Kou:Weld. J., 1988, vol. 67, pp. 29s-34s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choo, R.T.C., Szekely, J. & David, S.A. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part II. modeling the weld pool and comparison with experiments. Metall Trans B 23, 371–384 (1992). https://doi.org/10.1007/BF02656292

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656292

Keywords

Navigation