Skip to main content
Log in

Mechanisms of tempered martensite embrittlement in low alloy steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Low , Jr.: inFract. Eng. Mater., ASM, 1964, p. 127.

  2. C. I. McMahon, Jr.: ASTM STP 407, p. 127, American Society for Testing and Materials, 1968.

  3. E. B. Kula and A. A. Anctil:J. Mater., 1964, vol. 4, p. 817.

    Google Scholar 

  4. B. J. Schulz and C. J. McMahon, Jr.: ASTM STP 499, p. 104, American Society for Testing and Materials, 1972.

  5. M. A. Grossmann:Trans. AIME, 1946, vol. 167, p. 39.

    Google Scholar 

  6. H. Schrader, H. J. Wiester, and H. Siepmann:Arch. Eisenhuettenw., 1950, vol. 21, p. 21.

    CAS  Google Scholar 

  7. R. L. Rickett and J. M. Hodge:Proc. ASTM, 1951, vol. 51, p. 931.

    CAS  Google Scholar 

  8. L. J. Klingler, W. J. Barnett, R. P. Frohmberg, and A. R. Troiano:Trans. ASM, 1954, vol. 46, p. 1557.

    Google Scholar 

  9. J. J. Irani, M. J. May, and D. Elliott: ASTM STP 407, p. 168, American Society for Testing and Materials, 1968.

  10. E. J. Ripling:Trans. ASM, 1950, vol. 42, p. 439.

    Google Scholar 

  11. G. V. Luerssen and O. V. Greene:, 1935, vol. 23, p. 861.

    CAS  Google Scholar 

  12. L. S. Castleman, B. L. Averbach, and M. Cohen:, 1952, vol. 44, p. 240.

    Google Scholar 

  13. R. M. Horn: Ph.D. Thesis, University of California at Berkeley, 1976 (Lawrence Berkeley Laboratory Report No. LBL-5787, December 1976).

  14. V. H. Lindborg and B. L. Averbach:Acta Met., 1966, vol. 14, p. 1583.

    Article  CAS  Google Scholar 

  15. E. F. Walker and M. J. May: ISI Publ. 120, p. 135, 1970.

  16. W. Backfisch and K. H. Schwalbe:Proc. Fourth International Conf. on Fracture, Waterloo, vol. 2, p. 73, 1977.

    Google Scholar 

  17. J. E. King, R. F. Smith, and J. F. Knott:Ibid, vol. 2, p. 279.

  18. G. Thomas:Met. Trans. A, 1978, vol. 9A, p. 439.

    Article  CAS  Google Scholar 

  19. A. Nakashima and J. F. Libsch:Trans. ASM, 1961, vol. 53, p. 753.

    CAS  Google Scholar 

  20. B. S. Lement, B. L. Averbach, and M. Cohen:, 1954, vol. 46, p. 851.

    Google Scholar 

  21. A. J. Baker, F. J. Lauta, and R. P. Wei: ASTM STP 370; p. 3, American Society for Testing and Materials, 1963.

  22. R. D. Goolsby: Ph.D. Thesis, University of California in Berkeley, 1971 (Lawrence Berkeley Laboratory Report No. LBL-405, November 1971).

  23. A. G. Allten and P. Payson:Trans. ASM, 1953, vol. 45, p. 498.

    Google Scholar 

  24. C. H. Shih, B. L. Averbach, and M. Cohen:, 1956, vol. 48, p. 86.

    Google Scholar 

  25. C. J. Altstetter, M. Cohen, and B. L. Averbach:, 1962, vol. 55, p. 287.

    CAS  Google Scholar 

  26. M. S. Bhat: Ph.D. Thesis, University of California at Berkeley, 1977 (Lawrence Berkeley Laboratory Report No. LBL-6046, February 1977)

  27. W. S. Owen:J. Iron Steel Inst., 1957, vol. 177, p. 445.

    Google Scholar 

  28. B. R. Banerjee: ASTM STP 370, p. 94, American Society for Testing and Materials, 1963.

  29. B. R. Banerjee:J. Iron Steel Inst., 1965, vol. 203, p. 166.

    Google Scholar 

  30. J. M. Capus and G. Mayer:Metallurgia, 1960, vol. 62, p. 133.

    Google Scholar 

  31. J. R. Rellick and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 2439.

    Article  CAS  Google Scholar 

  32. S. K. Banerji, C. J. M Mahon, Jr., and H. C. Feng:Met. Trans. A, 1978, vol. 9A, p. 237.

    Article  CAS  Google Scholar 

  33. R. M. Horn and R. O. Ritchie:Proc. 106th Annual AIME Meeting, Atlanta, March 1977.

  34. F. J. Witt:Practical Application of Fracture Mechanics to Pressure-Vessel Technology, p. 163, The Institute of Mechanical Engineers, London, 1971.

    Google Scholar 

  35. J. D. Landes and J. A. Begley: Westinghouse Scientific Paper 76-1E7-JINTF-P3, May 1976, Westinghouse Research Laboratories, Pittsburgh, Pa. 15235.

    Google Scholar 

  36. R. O. Ritchie, G. G. Garrett, and J. F. Knott:Int. J. of Fract. Mech, 1971, vol. 7, p. 462.

    Google Scholar 

  37. B. D. Cullity: inElements of X-Ray Diffraction, p. 391, Addison-Wesley Publ. Co. Inc., Reading, Mass., 1959.

    Google Scholar 

  38. D. Bhandarkar, V. F. Zackay, and E. R. Parker:Met. Trans., 1972, vol. 3, p. 2619.

    Article  CAS  Google Scholar 

  39. R. O. Ritchie, M. H. Castro-Cedeno, V. F. Zackay, and E. R. Parker:Met. Trans. A, 1978, vol. 9A, p. 35.

    Article  CAS  Google Scholar 

  40. C. W. Marschall, R. F. Hehemann, and A. R. Troiano:Trans. ASM, 1962, vol. 55, p. 135.

    CAS  Google Scholar 

  41. J. McMahon and G. Thomas:Proc. Third Int’l Conf. on the Strength of Metals and Alloys, vol. 1, p. 180, Cambridge, Institute of Metals, London, August 1973.

    Google Scholar 

  42. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Met. Trans., 1974, vol. 5, p. 1663.

    Article  CAS  Google Scholar 

  43. B. V. N. Rao, J. Y. Koo, and G. Thomas:Proc. Electron Microscopy Society of America, p. 30, Claitors Publication Division, Baton Rouge, 1975.

    Google Scholar 

  44. K. J. Kim and L. H. Schwartz:Mater. Sci. Eng., in press.

  45. W. W. Gerberich, P. L. Hemmings, V. F. Zackay, and E. R. Parker: inFracture 1969, p. 288, Proc. Second Int’l. Conf. on Fracture, Brighton, 1969, Chapman and Hall, Ltd., London.

    Google Scholar 

  46. R. O. Ritchie:J. Eng. Mater. Technol., Trans. ASME Series H, 1977, vol. 99, p. 195.

    CAS  Google Scholar 

  47. C. L. Briant and S. K. Banerji: Unpublished research, General Electric Co., Schenectady, New York, 1977.

  48. R. O. Ritchie: Ph.D. Thesis, University of Cambridge, 1973.

  49. G. Y. Lai, W. E. Wood, E. R. Parker, and V. F. Zackay: Lawrence Berkeley Laboratory Report No. LBL-2236, University of California, April, 1975.

  50. Der-Hung Huang and G. Thomas:Met. Trans. A, 1977, vol. 8A, p. 1661.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Lawrence Berkeley Laboratory, University of California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, R.M., Ritchie, R.O. Mechanisms of tempered martensite embrittlement in low alloy steels. Metall Trans A 9, 1039–1053 (1978). https://doi.org/10.1007/BF02652208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652208

Keywords

Navigation