Skip to main content
Log in

A rationalization of stress-strain behavior of two-ductile phase alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An extensive literature review indicated that the law of mixture rule can at times account for stress-strain behavior of two-ductile phase alloys in terms of the stress-strain behavior of component phases. In the present investigation, various factors which can contribute to the stress-strain behavior of two-ductile phase alloys are considered, using Ti-Mn alloys as the model system. Particular attention is focused on the effect of elastic, elasto-plastic, and plastic interactions between the phases on the stress-strain behavior. It is shown that the law of mixture cannot adequately explain the stress-strain behavior. The following equation is proposed to describe the stress-strain behavior of two-ductile phase alloys: Pα-β = fαPα c + fβPβ c + Iα-β p, where Pα-β is a given stress-strain property, fα and f/gb are respective volume fractions of α and β-phases, Pα c and Pβ c are corrected properties of α and β-phases, and Iα-β p is the interaction term. It is found that for α- β Ti-Mn alloys, for 0.2 pct yield strength, Iα-β p is positive, negative, or zero depending on the microstructure; but Iα-β p is always positive for the ultimate tensile strength and strain hardening rates and its magnitude depended on the microstructure. The reasons for the nature or sign of the interaction parameter for a given property are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Unckel:J. Inst, of Metals, 1937, vol. 61, p. 171.

    Google Scholar 

  2. R. W. K. Honeycombe and W. Boas:Aust. J. Sci. Res., 1948, vol. Al, p. 70.

    Google Scholar 

  3. L. M. Clarebrough:Aust. J. Sci. Res., 1950, vol. 3A, p. 72.

    CAS  Google Scholar 

  4. L. M. Clarebrough and G. R. Perger:Aust. J. Sci. Res., 1952, vol. A5, p. 114.

    Google Scholar 

  5. M. F. Ashby:Phil. Mag., 1970, vol. 21, p. 399.

    CAS  Google Scholar 

  6. B. Tamura, Y. Tomota, A. Akao, Y. Yamaoka, M. Ozawa, and S. Kanatoni:Trans. Iron & Steel Inst., Japan, 1973, vol. 13 (4), p. 283.

    Google Scholar 

  7. B. Karlsson and B. O. Sandstrom:Mat. Sci. and Eng., 1974, vol. 16, p. 161.

    Article  CAS  Google Scholar 

  8. Y. Tomota, K. Kuroki, and I. Tamura:J. Iron and Steel Inst., Japan, 1975, vol. 61, p. 107.

    CAS  Google Scholar 

  9. T. Nakamura and K. Wakasa:Trans. Iron and Steel Inst., Japan, 1976, vol. 16, p. 134.

    CAS  Google Scholar 

  10. H. Fischmeister and B. Karlsson:Z. Metallk., 1977, vol. 68 (5), p. 311.

    Google Scholar 

  11. T. Inoue and S. Kinostita:Trans. Iron and Steel Inst., Japan, 1977, vol. 17 (5), p. 245.

    Google Scholar 

  12. R. E. Smelser, J. L. Swedlow, and J. C. Williams: unpublished data, Carnegie Mellon University, Pittsburgh, PA, 1977.

  13. J. Jinoch, S. Ankem, and H. Margolin:Mat. Sci. and Engr., 1978, vol. 34, p. 203.

    Article  CAS  Google Scholar 

  14. J. J. Petrovic and A. K. Vasudévan:Mat. Sci. and Eng., 1978, vol. 334, p. 39.

    Article  Google Scholar 

  15. G. Liden:Mat. Sci. and Engr., 1979, vol. 40, p. 5.

    Article  Google Scholar 

  16. S. Ankem and H. Margolin:Metall. Trans. A, 1980, vol. 11A, p. 963.

    CAS  Google Scholar 

  17. S. Ankem and H. Margolin:Metall. Trans. A., 1982, vol. 13A, p. 595.

    Google Scholar 

  18. S. Ankem and H. Margolin:Metall. Trans. A, 1982, vol. 13A, p. 603.

    Google Scholar 

  19. J. E. Dorn and C. D. Starr:Relations of Properties to Microstructure, ASM, Metals Park, OH, 1954, p. 710.

    Google Scholar 

  20. H. Fischmeister, J.-Q. Hjalmered, B. Karlsson, G. Linden, and G. Sundstrom:Proc. Third Int. Conf. Strength of Metals and Alloys, Inst. of Metals and Iron and Steel Inst., Cambridge, London, 1973, vol. 1, p. 621.

    Google Scholar 

  21. R. G. Davies:Metall. Trans. A, 1978, vol. 9A, p. 41.

    CAS  Google Scholar 

  22. R. G. Davies:Metall. Trans. A, 1978, vol. 9A, p. 451.

    CAS  Google Scholar 

  23. R. G. Davies:Metall. Trans. A, 1978, vol. 9A, p. 671.

    CAS  Google Scholar 

  24. H. W. Hayden and S. Floreen:Metall. Trans., 1970, vol. 1, p. 1955.

    CAS  Google Scholar 

  25. A. R. Marder:Metall. Trans. A, 1981, vol. 12A, p. 1509.

    Google Scholar 

  26. A. H. Yegneswaran and K. Tangri:Metall. Trans. A, 1983, vol. 14A, p. 2407.

    CAS  Google Scholar 

  27. A. H. Yegneswaran and K. Tangri:Metal Science, 1984, vol. 18, p. 161.

    CAS  Google Scholar 

  28. F. C. Holden, H. R. Ogden. and R. I. Jaffee:J. of Metals, Feb. 1954. p. 169.

  29. H. R. Ogden, F. C. Holden, and R. I. Jaffee:J. of Metals, Jan. 1955, p. 105.

  30. F. C. Holden, H. R. Ogden, and R. I. Jaffee:J. of Metals, May 1956, p. 521.

  31. F. C. Holden, H. R. Ogden, and R. I. Jaffee:J. of Metals, Oct. 1956, p. 1388.

  32. D. Tseng and K. Tangri:Metall. Trans., 1982, vol. 13A, p. 1077.

    Article  CAS  Google Scholar 

  33. S. Floreen and H.W. Hayden:ASM Trans. Quart.. Sept. 1968, vol. 61 (3), p. 489.

    Google Scholar 

  34. I. Tamura, Y. Tomota, and M. Ozawa:Proc. Third International Conference on Strength of Metals and Alloys, Inst. of Metals, London, 1973, vol. 1, p. 611.

    Google Scholar 

  35. R. N. Wright and J. R. Wood:Metall. Trans. A, 1977. vol. 8A, p. 2007.

    CAS  Google Scholar 

  36. A. A. Hussein:Metall. Trans. A, 1982, vol. 13A. p. 847.

    Google Scholar 

  37. S. Ankem and H. Margolin:Metall. Trans. A, 1983, vol. 14A, p. 500.

    Google Scholar 

  38. S. Ankem and H. Margolin:Metall. Trans. A, 1977, vol. 8A, p. 1320.

    CAS  Google Scholar 

  39. J. C. Williams,Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, New York, NY, 1973, p. 1433.

    Google Scholar 

  40. D. de Fontaine, N. Paton, and J. C. Williams:Acta Metall., 1971, vol. 19, p. 1153.

    Article  Google Scholar 

  41. J. S. Park and H. Margolin:Metall. Trans. A, 1984, vol. 15A, p. 155.

    CAS  Google Scholar 

  42. J. B. Newkirk and A. H. Geisler:Acta Metall., 1953, vol. 1, p. 370.

    Article  Google Scholar 

  43. K. S. Chan, C. C. Wojcik, and D. A. Koss:Metall. Trans. A, 1981, vol. 12A, p. 1899.

    Google Scholar 

  44. K. Hashimoto and H. Margolin:Acta Metall., 1983, vol. 31. p. 773.

    Article  CAS  Google Scholar 

  45. K. Hashimoto and H. Margolin:Acta Metall., 1983, vol. 31, p. 787.

    Article  CAS  Google Scholar 

  46. H. Margolin and T. V. Vijayaraghavan:Metall. Trans. A, 1983, vol. 14A, p. 2043.

    CAS  Google Scholar 

  47. M. A. Greenfield and H. Margolin:Metall. Trans., 1972, vol. 3, p. 2649.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankem, S., Margolin, H. A rationalization of stress-strain behavior of two-ductile phase alloys. Metall Trans A 17, 2209–2226 (1986). https://doi.org/10.1007/BF02645919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645919

Keywords

Navigation