Skip to main content
Log in

Amorphous Cr5Si3 thin films— morphology and kinetics of crystallization

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The changes in morphology and the crystallization kinetics of amorphous Cr5Si3 were studied by means ofin situ resistivity measurements and hot stage transmission electron microscopy (TEM). The crystallization process is controlled by nucleation and growth during the continuous heating as well as in the isothermal annealing. Initially the growth is isotropic. In the later stages it becomes anisotropic due to impingement. The growth characteristics and nucleation rates were deduced from the changes in linear dimension of a growing particle with time and from the number of nucleation points as a function of time. Growth rates were found to remain constant for most of the total transformation time while nucleation rates initially increase, subsequently peak, and then rapidly decrease. The determined nucleation and growth rates were used to calculate the transformed volume fractions. The results were compared with data obtained by assuming a linear relationship between instantaneous resistivity and volume fraction and with data based on measurements of projected crystallized areas in transmission (image analysis). Kinetics studies showed that the isothermal crys-tallization follows a sigmoidal curve. The apparent activation energy was found to be ∼2.4 eV. The transformation mode parameter was found to be ∼3 which, given that the crystallization reaction is interface controlled and the nucleation may be approximated as instantaneous, suggests a three-dimensional mode of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray:J. Elec- trochem. Soc, 1968, vol. 115, pp. 874–76.

    CAS  Google Scholar 

  2. B. L. Crowder and S. Zirinsky:IEEE Trans. Electron. Devices, 1979, vol. ED-26, pp. 369–71.

    CAS  Google Scholar 

  3. S. P. Murarka, D. B. Fraser, A. K. Sinha, and H. J. Levinstein:IEEE Trans. Electron. Devices, 1980, vol. ED-27, pp. 1409–17.

    CAS  Google Scholar 

  4. E.N. Nikitin:J. Tech. Phys., USSR, 1958, vol. 28, pp. 23–25.

    CAS  Google Scholar 

  5. L.N. Guseva and B.I. Ovechkin:Proc. Acad. Sci., USSR, 1957, vol. 112, p. 681.

    CAS  Google Scholar 

  6. S. E. Mayer and A. I. Mlavsky:Properties of Element and Compound Semiconductor, Interscience, New York, NY, H. C. Gatos, ed., 1960, p. 261.

    Google Scholar 

  7. D. Shinoda, S. Asanabe, and Y. Sasaki:J. Phys. Society, Japan, 1964, vol. 19, pp. 267–72.

    Google Scholar 

  8. I. Nishida and T. Sakata:J. Phys. Chem. Solids, 1978, vol. 39, pp. 499–505.

    Article  CAS  Google Scholar 

  9. J. P. Suchet:Crystal Chemistry and Semiconduction in Transition Metal Binary Compounds, Academic Press, New York, NY, 1971, p. 101.

    Google Scholar 

  10. F. Nava, T. Tien, and K. N. Tu:J. Appl. Phys., 1985, vol. 57, pp. 2018–25.

    Article  CAS  Google Scholar 

  11. Y.A. Chang:Trans. AIME, 1968, vol. 242, pp. 1509–15.

    CAS  Google Scholar 

  12. T.G. Chart:Metal Science, 1975, vol. 9, pp. 504–09.

    Article  CAS  Google Scholar 

  13. V. N. Eremenko, G. M. Lukashenko, V.R. Sidorko, and A.M. Kharkova:Poroshkovaya Metallurgiya (Russian), 1975, vol. 115, p. 61.

    Google Scholar 

  14. A.M. Chaplanov, N. A. Rokova, and V. A. Rossinski:Fiz. and Chim. Obrab. Mater. (Russian), 1981, vol. 7, p. 89.

    Google Scholar 

  15. B.Z. Weiss, K. N. Tu, and D. A. Smith:Acta Metall., 1968, vol. 34, pp. 1491–1504.

    Google Scholar 

  16. K. N. Tu and S.S. Lau:Thin Films-Interdiffusion and Reactions, Wiley-Interscience, New York, NY, J. M. Poate, K. N. Tu, and J. W. Mayer, eds., 1978, ch. 5, pp. 81–118.

    Google Scholar 

  17. B.Z. Weiss, K.N. Tu, and D.A. Smith:J. Appl. Phys., 1986, vol. 59, pp. 415–21.

    Article  CAS  Google Scholar 

  18. C.H. Dauben, D.H. Templeton, and C. E. Myers:J. Phys. Chem., 1956, vol. 60, pp. 443–45.

    Article  CAS  Google Scholar 

  19. M. Avrami:J. Chem. Phys., 1940, vol. 7, pp. 212-24; 1941, vol. 8, pp. 177–84.

    Article  Google Scholar 

  20. J. W. Christian:The Theory of Transformation in Metals and Alloys, Pergamon Press, 2nd ed., 1975, pp. 15–20.

  21. S. Maderand A.S. Nowick:Acta Metall., 1967, vol. 15, pp. 215–22.

    Article  Google Scholar 

  22. W. Krakow:Mat. Res. Soc. Symp. Proc, 1984, vol. 31, pp. 39–55.

    CAS  Google Scholar 

  23. T. Ozawa:J. Therm. Anal., 1970, vol. 2, pp. 301–24.

    Article  CAS  Google Scholar 

  24. K.F. Kelton and F. Spaepen:Phys. Rev., 1984, vol. B30, pp. 5516–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, B.Z., Tu, K.N. & Smith, D.A. Amorphous Cr5Si3 thin films— morphology and kinetics of crystallization. Metall Trans A 19, 1991–2003 (1988). https://doi.org/10.1007/BF02645203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645203

Keywords

Navigation