Skip to main content
Log in

A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The redistribution of carbon atoms during the early stages of ageing and tempering of iron-carbon martensites has previously been studied only by indirect methods. The computer-controlled atom probe field ion microscope permits the direct, quantitative determination of carbon concentrations at the atomic level, and thus all the stages of the martensite decomposition process become amenable to direct study. Analyses of a low-carbon martensite, Fe-1.0 at. pct C, (Fe-0.21 wt pct C), water quenched and tempered for 10 min at 150 °C, showed a matrix carbon content of only 0.14 at. pct. Analysis of a 2 nm diam area centered on a lath boundary showed a local concentration of 2.01 at. pct C. There is some evidence that this carbon level is associated with the presence of a thin film of retained austenite at the boundary. In the case of a higher carbon martensite, Fe-0.64 at. pct Mn, 3.47 at. pct C, (Fe-0.65 wt pct Mn-0.78 wt pct C) water quenched and aged for approximately 24 h at room temperature, analysis of twinned regions showed a matrix carbon level of 2.7 at. pct and a concentration enrichment to 6.9 at. pct in a region 2 nm diam, centered on the coherent twin interface. Assuming the segregated carbon to be located in a single atomic layer at the twin interface, this result indicates that a carbon concentration of 24 at. pct exists locally at the boundary. These results appear to be the first direct demonstration of the segregation of carbon atoms to lattice defects in carbon martensites. Tempering of the higher carbon martensite for 1 h at 160 °C produced further segregation of carbon to the region of twin interfaces. The matrix carbon content fell to 1.5 at. pct and the average carbon content over a 2 nm diam region at the interface rose to 8.7 at. pct. The width of the carbon segregated regions also increased, which seems to imply that incipient carbide precipitation in the plane of the twin boundaries is occurring at this stage of the tempering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Speich and W. C. Leslie:Met. Trans., 1972, vol. 3, p. 1043.

    CAS  Google Scholar 

  2. Y. Imai:Trans. Japan Inst. Metals, 1975, vol. 16, p. 721.

    CAS  Google Scholar 

  3. G. V. Kurdjumov and A. G. Khachaturyan:Met. Trans., 1972, vol. 3, p. 1069.

    Google Scholar 

  4. G. V. Kurdjumov:Met. Trans. A, 1976, vol. 7A, p. 999.

    Google Scholar 

  5. P. G. Winchell:Proc. Intl. Conf. on Martensitic Transformations (ICOMAT 79), Cambridge, Mass., 1979, p. 547 (publ. M. I. T.).

    Google Scholar 

  6. G. R. Speich:Trans. TMS-AIME, 1969, vol. 245, p. 2553.

    CAS  Google Scholar 

  7. V. I. Sarrak and S. O. Suvorova:Phys. Met. Metallogr., 1968, vol. 26, no. 1, p. 143.

    Google Scholar 

  8. L. I. Lysak and Ya. N. Vovik:Phys. Met. Metallogr., 1965, vol. 19, no. 5, p. 52.

    Google Scholar 

  9. G. V. Kurdjumov and L. K. Mikhaylova:Phys. Met. Metallogr., 1966, vol. 22, no. 6, p. 129.

    Google Scholar 

  10. L. I. Lysak and L. O. Andrishchuk:Phys. Met. Metallogr., 1969, vol. 28, no. 2, p. 166.

    Google Scholar 

  11. L. I. Lysak, N. A. Storchak, and A. G. Drachinskaya:Phys. Met. Metallogr., 1977, vol. 43, no. 3, p. 138.

    Google Scholar 

  12. L. I. Lysak, V. Ye. Danil’chenko, Yu. M. Polischuk, and A. I. Ustinov:Phys. Met. Metallogr., 1976, vol. 41, no. 2, p. 108.

    Google Scholar 

  13. G. V. Kurdjumov and L. Lysak:J. Tech. Phys. USSR, 1949, vol. 19, p. 525 andJ. Iron & Steel Inst., 1947, vol. 156, p. 29.

    Google Scholar 

  14. P. C. Chen: Ph. D. Thesis, Purdue University, May 1979.

  15. C. S. Roberts, B. L. Averbach, and M. Cohen:Trans. ASM, 1953, vol. 45, p. 576.

    Google Scholar 

  16. P. G. Winchell and M. Cohen:Trans. ASM, 1962, vol. 55, p. 347.

    CAS  Google Scholar 

  17. H. Gerdien:Arch. Eisenhuttenw., 1959, vol. 30, p. 673.

    CAS  Google Scholar 

  18. G. Eldis: Ph. D. Thesis, Massachusetts Institute of Technology, 1971.

  19. A. M. Sherman: Ph. D. Thesis, Massachusetts Institute of Technology, 1972.

  20. V. I. Izotov and L. M. Utevskiy:Phys. Met. Metallogr., 1968, vol. 25, no. 1, p. 86.

    Google Scholar 

  21. A. G. Khachaturyan:Fiz. Tverd. Tela., 1967, vol. 9, p. 2861.

    CAS  Google Scholar 

  22. A. G. Khachaturyan and T. A. Onisimova:Phys. Met. Metallogr., 1968, vol. 26, no. 6, p. 12.

  23. S.Nagakura, K. Shiraishi, Y. Hirotzu, A. Ono, and H. Yotsumoto:Electron Microscopy 1974, vol. 1, p. 664(Proc. 8th Intl. Congr. Electron Microscopy, Canberra, Aug.-Sept. 1974). Publ. Australian Academy of Science, Canberra, Australia.

    Google Scholar 

  24. S. Nagakura, K. Shiraishi, and Y. Hirotsu:Trans. Japan Inst. Metals, 1975, vol. 16, p. 601.

    CAS  Google Scholar 

  25. S. Nagakura and M. Toyoshima:Trans. Japan Inst. Metals, 1979, vol. 20, p. 100.

    CAS  Google Scholar 

  26. A. K. Sachdev: Ph. D. Thesis, Massachusetts Institute of Technology, 1977.

  27. M. Toyoshima and S. Nagakura:Proc. Intl. Conf. on Modulated Structures, Hawaii 1979, p. 263 (publ. Amer. Inst. of Physics).

  28. J. R. Genin and P. R. Flinn:Trans. TMS-AIME, 1968, vol. 242, p. 1419.

    CAS  Google Scholar 

  29. W. K. Choo and R. Kaplow:Acta Met., 1973, vol. 21, p. 725.

    Article  CAS  Google Scholar 

  30. N. DeCristofaro and R. Kaplow:Met. Trans. A, 1978, vol. 8A, p. 35.

    Google Scholar 

  31. N. DeCristofaro, R. Kaplow, and W. S. Owen:Met. Trans. A, 1978, vol. 9A, p. 821.

    CAS  Google Scholar 

  32. R. A. Johnson:Acta Met., 1965, vol. 13, p. 1259.

    Article  CAS  Google Scholar 

  33. R. A. Johnson:Acta Met., 1967, vol. 15, p. 513.

    Article  CAS  Google Scholar 

  34. F. E. Fujita, C. Shiga, T. Moriya, and H. Ino:J. Japan Inst. Metals, 1974, vol. 38, p. 1030.

    CAS  Google Scholar 

  35. C. Shiga, M. Kimura, and F. E. Fujita:J. Japan Inst. Metals, 1974, vol. 38, p. 1037.

    CAS  Google Scholar 

  36. C. Shiga, F. E. Fujita, and M. Kimura:J. Japan Inst. Metals, 1975, vol. 39, p. 1205.

    CAS  Google Scholar 

  37. E. Tekin and P. M. Kelly: “Precipitation from Iron Based Alloys”, G. R. Speich and J. B. Clark, eds., 1963, p. 173. AIME Metallurgical Society Conference Series, vol. 28.

  38. E. W. Muller, J. A. Panitz and S. B. McLane:Rev. Scient. Instrum., 1968, vol. 39, p. 83.

    Article  Google Scholar 

  39. M. K. Miller, P. A. Beaven, R. J. Lewis, and G. D. W. Smith:Surface Sci., 1978, vol. 70, p. 470.

    Article  CAS  Google Scholar 

  40. P. A. Beaven, M. K. Miller, and G. D. W. Smith:Proc. Intl. Conf. on Martensitic Transformations, ICOMAT 79, Cambridge, Mass, 1979, p. 559 (publ. M. 1. T.).

    Google Scholar 

  41. M. K. Miller: D. Phil. Thesis, Oxford University 1977; (b)|M. K. Miller, P. A. Beaven, and G. D. W. Smith:Surface and Interface Analysis, 1979, vol. 1, p. 149.

  42. P. A. Beaven, M. K. Miller, and G. D. W. Smith: Proc. “Phase Transformations” York, 1979, vol. 2, pp. 1, 12-14. Inst. of Metallargists, Conf. Series 3, No. 11, London 1979.

  43. P. F. Mills: D. Phil. Thesis, Cambridge University, 1980.

  44. B. V. N. Rao and G. Thomas:Proc. Intl. Conf. on Martensitic Transformations, ICOMAT 79, Cambridge, Mass., 1979, p. 12 (publ. M. I. T.).

    Google Scholar 

  45. S. Barnard, G. D. W. Smith, M. Sarkara, and G. Thomas:Scri. Met., 1981, no. 4, in press.

  46. P. C. Sekhar and M. H. Richman:Metallography, 1971, vol. 4, p. 133.

    CAS  Google Scholar 

  47. B. N. Ranganathan and H. E. Grenga:Phil. Mag., 1972, vol. 26, p. 265.

    CAS  Google Scholar 

  48. P. C. Sekhar, M. R. Schreiner and M. H. Richman:Metallography, 1971, vol. 4, p. 147.

    Article  CAS  Google Scholar 

  49. B. N. Ranganathan and H. E. Grenga:J. Microscopy (London), 1973, vol. 98, p. 49.

    Google Scholar 

  50. B. N. Ranganathan and H. E. Grenga:Phil. Mag., 1974, vol. 30, p. 161.

    CAS  Google Scholar 

  51. P. M. Kelly and J. Nutting:J. Iron and Steel Inst., 1961, vol. 197, p. 199.

    Google Scholar 

  52. M. K. Miller and G. D. W. Smith:Metal Science, 1977, vol. 11, p. 249.

    Article  CAS  Google Scholar 

  53. B. V. N. Rao, R. W. Miller and G. Thomas:Proc. Intl. Conf. Heat Treatment, 1976, The Metals Society, London, p. 75.

    Google Scholar 

  54. H. K. H. D. Bhadeshia and D. V. Edmonds:Proc. Intl. Conf. on Martensitic Transformations, ICOMA T 79, Cambridge, Mass., 1979, p. 28.

  55. A. E. Lord and D. N. Beshers:Acta Met., 1966, vol. 14, p. 1659.

    Article  CAS  Google Scholar 

  56. R. Klein:J. Chem. Phys., 1953, vol. 21, p. 1177.

    Article  CAS  Google Scholar 

  57. T. Radon:Acta Phys. Polonica, 1976, vol. A50, p. 3.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Metallurgy and Science of Materials, University of Oxford

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M.K., Beaven, P.A. & Smith, G.D.W. A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy. Metall Trans A 12, 1197–1204 (1981). https://doi.org/10.1007/BF02642333

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642333

Keywords

Navigation