Skip to main content
Log in

Synthetic hydrogel microspheres as substrata for cell adhesion and growth

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Cross-linked poly(methyl methacrylate) (PMMA) microspheres were subjected to alkaline hydrolysis to obtain hydrophilic microspheres having carboxyl residues distributed throughout the matrix. These microspheres were found to support the growth of human skin fibroblasts and human heart and lung cells. Further, fibroblasts grown on them were found to be comparable with those grown on the commercial tissue culture plate with respect to [14C]amino acid uptake and incorporation into proteins. The hydrolyzed PMMA microspheres may find application as a microcarrier for cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubert, N.; Reach, G.; Serne, H., et al. Reversible morphological and functional abnormalities of RIN-mSF cells cultured on polystyrene sulfonate beads. J. Biomed. Mater. Res. 21:585–601;1987.

    Article  PubMed  CAS  Google Scholar 

  2. Blackburn, C. C.; Swank-Hill, P.; Schnaar, R. L. Gangliosides support neural retina cell adhesion. J. Biol. Chem. 261:2873–2881; 1986.

    PubMed  CAS  Google Scholar 

  3. Blackburn, C. C.; Schnaar, R. L. Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids. J. Biol. Chem. 258:1180–1188; 1983.

    PubMed  CAS  Google Scholar 

  4. Brandley, B. K.; Weisz, O. A.; Schnaar, R. L. Cell attachment and long-term growth on derivatizable polyacrylamide surfaces. J. Biol. Chem. 262:6431–6437; 1987.

    PubMed  CAS  Google Scholar 

  5. Carbonetto, S. T.; Gruver, M. M.; Turner, D. C. Nerve fibre growth on defined hydrogel substrates. Science 216:897–899; 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Chithambara Thanoo, B; Jayakrishnan, A. Radiopaque hydrogel microspheres. J. Microcencapsulation, in press.

  7. Faris, B.; Mozzicato; Mogayzel P. J., Jr., et al. Effect of protein-hydroxyethyl methacrylate hydrogels on cultured endothelial cells. Exp. Cell Res. 143:15–25; 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman, J.; Moseona, A. Role of cell shape in growth control. Nature 273:345–347; 1978.

    Article  PubMed  CAS  Google Scholar 

  9. Frazier, W. A.; Glaser, L. Surface components and cell recognition. Ann. Rev. Biochem. 48:491–523; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Johansson, A.; Nielsen, V. Biosilon a new microcarrier. Dev. Biol. Stand. 46:125–129; 1980.

    PubMed  CAS  Google Scholar 

  11. Largent, B. L.; Walton, K. M.; Hoppe, C. A., et al. Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces. J. Biol. Chem. 259:1764–1769; 1984.

    PubMed  CAS  Google Scholar 

  12. Libby, P.; O'Brien, K. V. Culture of quiescent arterial smooth muscle cells in a defined serum-free medium. J. Cell. Physiol. 115:217–223; 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Lowry, O. H.; Rosebrough, N. H.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  14. Lydon, M. J. Synthesis hydrogels as substrata for cell adhesion studies. Br. Polymer. J. 18:22–27; 1986.

    Article  Google Scholar 

  15. McAuslan, B. R.; Johnson, G. Cell responses to biomaterials I: adhesion and growth of vascular endothelial cells on poly HEMA following surface modification by hydrolytic etching. J. Biomed. Mater. Res. 21:921–935; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Pless, D. D.; Lee, Y. C.; Roseman, S., et al. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258:2340–2349; 1983.

    PubMed  CAS  Google Scholar 

  17. Raja, R. H.; Herzig, M.; Grissom, M., et al. Preparation and use of synthetic cell culture surfaces. J. Biol. Chem. 261:8505–8513; 1986.

    PubMed  CAS  Google Scholar 

  18. Schnaar, R. L.; Weigel, P. H.; Kuhlenschmidt, M. S., et al. Adhesion of chicken hepatocytes to polyacrylamide gels derivatized withN-acetylglucosamine. J. Biol. Chem. 253:7940–7951; 1978.

    PubMed  CAS  Google Scholar 

  19. Shivakumar, K.; Jayaraman, J. Salinity adaptation in fish: effect of thyroxine on mitochondrial status. Arch. Biochem. Biophys. 233:728–735; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Usuimaa, P. A.; Hiltunen, J. K.; Sormuner, R. T., et al. Microcarrier culture of neonatal cardiac myocytes in metabolic studies. Cardiovasc. Res. 22:291–295; 1988.

    Article  Google Scholar 

  21. Van Wezel. Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature 216:64–65; 1967.

    Article  PubMed  Google Scholar 

  22. Varani, J.; Dame, M.; Beals, T. F., et al. Growth of three established cell lines on glass microcarriers. Biotechnol. Bioeng. 25:1359–1372; 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Indian Council of Medical Research, New Delhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumar, K., Renuka Nair, R., Jayakrishnan, A. et al. Synthetic hydrogel microspheres as substrata for cell adhesion and growth. In Vitro Cell Dev Biol 25, 353–357 (1989). https://doi.org/10.1007/BF02624598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624598

Key words

Navigation