Skip to main content
Log in

Human dermal microvascular endothelial cells: An improved method for tissue culture and a description of some singular properties in culture

  • New Cell Line
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Tissue culture of human large vessel endothelium is now routine in many laboratories but tissue culture of human microvascular endothelium remains a difficult procedure, preventing study of features of endothelial function that may be peculiar to the microvasculature. This report describes an improved method for tissue culture of human dermal microvascular endothelium derived from foreskin. The method is rapid, reproducible, avoids contamination with nonendothelial cells, and does not require the use of a tumor-conditioned medium. The major modifications over existing techniques are the use of a Percoll density gradient to remove the majority of nonenodthelial cells followed by a simplified weeding procedure that removes residual nonendothelial cells and leaves large numbers of endothelial cells to grow rapidly to confluence. The cells are identified as endothelial by their morphology and by positive immunofluorescence for Factor VIII. Proliferation experiments demonstrate their requirement for an exogenous matrix and for a high concentration of human serum. Whole serum was required as platelet-poor plasma serum had poor growth stimulatory activity. Proliferation could be enhanced by dibutyryl cyclic AMP or endothelial cell growth substance and was maximal with the combination of endothelial cell growth substance and heparin. However, the use of these agents did not remove the requirement for an exogenous matrix. Fibroblast growth factor, platelet-derived growth factor, epidermal growth factor, nerve growth factor, and thrombin did not increase proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auerbach, R.; Alby, L.; Morrissey, L. W. et al. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. Vol. 29: 401–411; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Bowman, P. D.; Betz, A. L.; Ar, D.; et al. Primary culture of capillary endothelium from rat brain. In Vitro 17: 353–362; 1981.

    Article  PubMed  CAS  Google Scholar 

  3. Castellot, J. J.; Karnovsky, M. J.; Spiegelman, B. M. Potent stimulation of vascular endothelial cell growth by differentiated 3T3 adipocytes. Proc. Natl. Acad. Sci. USA 77: 6007–6011; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, R. A. F.; Quinn, J. H.; Winn, H. H.; et al. Fibronectin is produced by blood vessels in response to injury. J. Exp. Med. 156: 646–651; 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Clemmons, D. R.; Isley, W. L.; Todd Brown, M. Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth. Proc. Natl. Acad. Sci. USA 80: 1641–1645; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Cupps, T. R.; Fauci, A. S. The vasculitides. In: Smith, L. H., ed. Major problems in internal medicine, vol. 21. Philadelphia: W. B. Saunders; 1981.

    Google Scholar 

  7. Davies, P. F.; Ross, R. Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor. J. Cell Biol. 79: 663–671; 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Davison, P. M.; Bensch, K.; Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75: 316–321; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman, J.; Haudenschild, C. C.; Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76: 5217–5221; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature 288: 551–556; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Giguere, L.; Cheng, J.; Gospodarowicz, D. Factors involved in the control of proliferation of bovine corneal endothelial cells maintained in serum-free medium. J. Cell Physiol. 110: 72–80; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Gimbrone, M. A. Culture of vascular endothelium. In: Spaet, T., ed. Progress in hemostasis and thrombosis, vol 3. New York: Grune and Stratton; 1976: 1–28.

    Google Scholar 

  13. Gitlin, J. D.; D'Amore, P. A. Culture of retinal capillary cells using selective growth media. Microvasc. Res. 26: 74–80; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Gospodarowicz, D.; Ill, C. Extracellular matrix and control of proliferation of vascular endothelial cells. J. Clin. Invest. 65: 1351–1364; 1980.

    PubMed  CAS  Google Scholar 

  15. Gospodarowicz, D.; Cheng, J.; Hirabayashi, K.; et al. The extracellular matrix and the control of vascular endothelial cell and smooth muscle cell proliferation. In: Dingle, J. T., Gordon, J. L. eds. Research monographs in cell and tissue physiology, vol. 6. The Netherlands: Elsevier/North Holland Biomedical Press; 1981: 135–165.

    Google Scholar 

  16. Jaffe, E. A.; Mosher, D. F. Synthesis of fibronectin by cultured human endothelial cells. Ann. NY Acad. Sci. 312: 122–131; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, R. L.; Fink, C. W.; Ziff, M. Lymphotoxin formation by lymphocytes and muscle in polymyositis. J. Clin. Invest. 51: 2435–2449; 1972.

    PubMed  CAS  Google Scholar 

  18. Kern, P. A.; Knedler, A.; Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71: 1822–1829; 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Maciag, T.; Hoover, G. A.; Stemerman, M. B.; et al. Serial propagation of human endothelial cells in vitro. J. Cell. Biol. 91: 420–426; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Madri, J. A. Endothelial cell-matrix interactions in hemostasis. In: Spaet, T. ed. Progress in hemostasis and thrombosis, vol 6. New York: Grune and Stratton; 1982: 1–24.

    Google Scholar 

  21. McAuslan, B. R.; Hannan, G. N.; Reilly, W.; et al. The basis of the angiogenic activity of EGF: matrix regulated proliferation and migration of vascular endothelial cells in response to EGF. Third International Symposium on the Biology of the Vascular Endothelial Cell. 1984.

  22. Norton, W. L.; Nardoo, J. M. Vascular disease in progressive systemic sclerosis (Scleroderma). Ann. Intern. Med. 73: 317–324; 1970.

    PubMed  CAS  Google Scholar 

  23. Pastan, I. H.; Johnson, G. S.; Anderson, W. B. Role of cyclic nucleotides in growth control. Ann. Rev. Biochem. 44: 491–522; 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Rennard, S. I.; Berg, R.; Martin, G. R.; et al. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal. Biochem. 104: 205–214; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Ruoslahti, E.; Hayman, E. G.; Pierschbacher, M.; et al. Fibronectin: purification, immunochemical properties, and biological activities. In: Cunningham, L. W.; Frederiksen, D. W. eds. Methods in enzymology, vol. 82. New York: Academic Press; 1982: 803–831.

    Google Scholar 

  26. Rutherford, R. B.; Ross, R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J. Cell Biol. 69: 196–203; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, E. W.; Kurban, A. Capillary alterations in lupus erythematosus. Bull. Johns Hopkins Hosp. 110: 202–219; 1962.

    PubMed  CAS  Google Scholar 

  28. Stel, H. V.; van der Kwast, Th. H.; Veerman, E. C. I. Detection of factor VIII/coagulant antigen in human liver tissue. Nature 303: 530–532; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Stenman, S.; Vaheri, A. Distribution of a major connective tissue protein, fibronectin, in normal human tissue. J. Exp. Med. 147: 1054–1064; 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Stout, R. Cyclic AMP: A potent inhibitor of DNA synthesis in cultured arterial endothelial and smooth muscle cells. Diabetologia 22: 51–55; 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Thorgeirsson, G.; Robertson, A. L. The vascular endothelium-pathobiolobic significance. Am. J. Pathol. 93: 803–848; 1978.

    PubMed  CAS  Google Scholar 

  32. Thornton, C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222: 623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Wall, R. T.; Harker, L. A.; Quadracci, J.; et al. Factors influencing endothelial cell proliferation in vitro. J. Cell. Physiol. 96: 203–213; 1978.

    Article  PubMed  CAS  Google Scholar 

  34. Zetter, B. R. The endothelial cells of large and small blood vessels. Diabetes 30 (suppl 2): 24–28; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. R. M. Marks is recipient of a National Health and Medical Research Council of Australia Postgraduate Scholarship. Financial assistance was provided by the Scleroderma Association of New South Wales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, R.M., Czerniecki, M. & Penny, R. Human dermal microvascular endothelial cells: An improved method for tissue culture and a description of some singular properties in culture. In Vitro Cell Dev Biol 21, 627–635 (1985). https://doi.org/10.1007/BF02623295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623295

Key words

Navigation