Skip to main content
Log in

Protein factors which regulate cell motility

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Cell motility (i.e., movement) is an essential component of normal development, inflammation, tissue repair, angiogenesis, and tumor invasion. Various molecules can affect the motility and positioning of mammalian cells, including peptide growth factors, (e.g., EGF, PDGF, TGF-beta), substrate-adhesion molecules (e.g., fibronectin, laminin), cell adhesion molecules (CAMs), and metalloproteinases. Recent studies have demonstrated a group of motility-stimulating proteins which do not appear to fit into any of the above categories. Examples include: 1)scatter factor (SF), a mesenchymal cell-derived protein which causes contiguous sheets of epithelium to separate into individual cells and stimulates the migration of epithelial as well as vascular endothelial cells; 2)autocrine motility factor (AMF), a tumor cell-derived protein which stimulates migration of the producer cells; and 3)migration-stimulating factor (MSF), a protein produced by fetal and cancer patient fibroblasts which stimulates penetration of three-dimensional collagen gels by non-producing adult fibroblasts. SF, AMF, and MSF are soluble and heat labile proteins with Mr of 77, 55, and 70 kd by SDS-PAGE, respectively, and may be members of a new class of cell-specific regulators of motility. Their physiologic functions have not been established, but available data suggest that they may be involved in fetal development and/or tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atnip, K. D.; Carter, L. M.; Nicolson, G. L., et al. Chemotactic response of rat mammary adenocarcinoma cell clones to tumor-derived cytokines. Biochem. Biophys. Res. Comm. 146: 996–1002; 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Aznavoorian, S. A.; Stracke, M. L.; Liotta, L. A. Differential effect of pertussis toxin on chemotaxis vs haptotaxis to components of the extracellular matrix. J. Cell Biol. 107 (Part 3): 586a; 1988 (abstract).

    Google Scholar 

  3. Barrandon, Y.; Green, H. Cell migration is essential for sustained growth of keratinocyte colonies: the role of transforming growth factors and epidermal growth factor. Cell 50: 1131–1137; 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Bebawy, S. T.; Gorka, J.; Hyers, T. M., et al. In vitro effects of platelet factor 4 on normal human neutrophil functions. J. Leukocyte Biol. 39: 423–434; 1986.

    PubMed  CAS  Google Scholar 

  5. Behrens, J.; Birchmeier, W.; Goodman, S. L., et al. Dissociation of Madin-Darby kidney epithelial cells by the monoclonal antibody anti-Arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101: 1307–1315; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Behrens, J.; Mareel, M. M.; Van Roy, F. M., et al. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after loss of uvomorulin-mediated cell-cell adhesion. J. Cell Biol. 108: 2435–2447; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Blay, J.; Brown, K. D. Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells. J. Cell Physiol. 124: 107–112; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Bowersox, J. C.; Sorgente, N. Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res. 42: 2547–2551; 1982.

    PubMed  CAS  Google Scholar 

  9. Burk, R. R. A factor from a transformed cell line that affects cell migration. PNAS USA 70: 369–372; 1973.

    Article  PubMed  CAS  Google Scholar 

  10. Bussolino, F.; Wang, J. M.; Defilippi, P., et al. Granulocyte- and granulocyte-macrophage colony-stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337: 471–473; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Cereijido, M.; Ehrenfeld, J.; Meza, I., et al. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J. Membrane Biol. 52: 147–159; 1980.

    Article  CAS  Google Scholar 

  12. Connolly, D. T.; Stoddard, B. L.; Harakes, N. K., et al. Human fibroblast-derived growth factor is a mitogen and chemoattractant for endothelial cells. Biochem. Biophys. Res. Comm. 144: 705–712; 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Damsky, H. C.; Richa, J.; Solter, D., et al. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34: 455–466; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. DeLarco, J. E.; Pigott, D. A.; Lazarus, J. A. Ectopic peptides released by a human melanoma cell line that modulate the transformed phenotype. PNAS USA 82: 5015–5019; 1985.

    Article  CAS  Google Scholar 

  15. Edelman, G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol. 2: 81–116; 1986.

    PubMed  CAS  Google Scholar 

  16. Edlman, G. M. Topobiology. Scientific American, May 1989; 76–88.

  17. Folkman, J. Tumor angiogenesis. Adv. Cancer Res. 43: 175–203; 1985.

    PubMed  CAS  Google Scholar 

  18. Folkman, J. Angiogenesis: initiation and control. In: Fishman, A. P., ed. Endothelium. Ann. NY Acad. Sci. 401: 212–227; 1982.

  19. Garbisa, S.; Pozzatti, R.; Muschel, R. J., et al. Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-Ela. Cancer Res. 47: 1523–1528; 1987.

    PubMed  CAS  Google Scholar 

  20. Gausse-Muller, V.; Kleinman, H. K.; Martin, G. R., et al. Role of attachment factors and attractants in fibroblast chemotaxis. J. Lab Clin. Med. 96: 1071–1080; 1980.

    Google Scholar 

  21. Gherardi, E.; Grey, J.; Stoker, M., et al. Purification of scatter factor, a fibroblast-derived basic protein which modulates epithelial interactions and movement. PNAS USA 86: 5844–5848; 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Gomez-Cambronero, J.; Yamazuki, M.; Metwally, F., et al. Granulocyte-macrophage colony-stimulating factor and human neutrophils: role of guanine nucleotide regulatory proteins. PNAS USA 86: 3569–3573; 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Grant, M.; Jerdan, J.; Merimee, T. J. Insulin-like growth factor-I modulates endothelial cell chemotaxis. J. Clin. Endocrin. Metab. 46: 370–371; 1987.

    Article  Google Scholar 

  24. Grey, A.-M.; Schor, A. M.; Rushton, G., et al. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. PNAS USA 86: 2438–2442; 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Grotendorst, G. R.; Seppa, H. E. J.; Kleinman, H. K., et al. Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. PNAS USA 78: 3669–3672; 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Grotendorst, G. R.; Soma, Y.; Takehara, K., et al. EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J. Cell Physiol.139: 617–623; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Guirguis, R.; Margulies, I.; Taraboletti, G., et al. Cytokine-induced pseudopodial protrusion is coupled to tumour cell migration. Nature 329: 261–263; 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Guirguis, R.; Schiffman, E.; Liu, B., et al. Detection of autocrine motility factor in urine as a marker of bladder cancer. JNCI 80: 1203–1211; 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi, H.; Yoshida, K.; Ozaki, T., et al. Chemotactic factor associated with invasion of cancer cells. Nature 226: 174–175; 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Heimark, R. L.; Schwartz, S. The role of membrane-membrane interactions in the regulation of endothelial cell growth. J. Cell Biol. 100: 1934–1940; 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Heimark, R. L.; Twardzik, D. R.; Schwartz, S. M. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233:1078–1080; 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Herron, G. S.; Banda, M. J.; Clark, E. J., et al. Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J. Biol. Chem. 261: 2814–2818; 1986.

    PubMed  CAS  Google Scholar 

  33. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48: 549–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Imhof, B. A.; Vollmers, H. P.; Goodman, S. L., et al. Cell-cell interaction and polarity of epithelial cells; specific perturbation using a monoclonal antibody. Cell 35: 667–675; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Ireland, G. W.; Stern, C. D.; Stoker, M. Human MRC5 cells induce a secondary primitive streak when grafted into chick embryos. J. Anat. 152: 223–224; 1987.

    Google Scholar 

  36. Jones, J. C. R.; Yokoo, K. M.; Goldman, R. D. A cell surface desmosomal-associated component: Identification of a tissue-specific cell adhesion molecule. PNAS USA 83: 7282–7286; 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Kaever, V.; Damerau, B.; Wessel, K., et al. Biologic properties of dihydro-leukotriene B4, an alternative leukotriene B4 metabolite. FEBS Lett. 231: 385–388; 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Liotta, L. A.; Mandler, R.; Murano, G., et al. Tumor cell autocrine motility factor. PNAS USA 83: 3302–3306; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Liotta, L. A.; Stetler-Stevenson, W. Editorial: Metalloproteinases and malignant conversion: Does correlation imply causality? JNCI 81: 556–557; 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Liotta, L. A.; Thorgeirsson, U. P.; Garbisa, S. Role of collagenases in tumor cell invasion. Cancer Metast. Rev. 1: 277–288; 1982.

    Article  CAS  Google Scholar 

  41. Maciag, T.; Mehlman, T.; Friesel, R. Heparin binds endothelial cell growth factor, the principal cell mitogen in bovine brain. Science 225: 932–935; 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Madri, J. A.; Pratt, B. M.; Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factorbeta depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106: 1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Mano-Hirano, Y.; Sato, N.; Sawasaki, Y., et al. Inhibition of tumor-induced migration of bovine capillary endothelial cells by mouse and rabbit tumor necrosis factor. JNCI 78: 115–120; 1987.

    PubMed  CAS  Google Scholar 

  44. Mege, J. L.; Gomez-Cambronero, J.; Molski, T. F., et al. Effect of granulocyte-macrophage colony-stimulating factor on superoxide production in cytoplasts and intact human neutrophils: role of protein kinase and G-proteins. J. Leukoc. Biol. 46: 161–168; 1989.

    PubMed  CAS  Google Scholar 

  45. Mensing, H.; Albini, A.; Krieg, T., et al. Enhanced chemotaxis of tumor-derived and virus-transformed cells to fibronectin and fibroblast-conditioned medium. Int. J. Cancer 33: 43–48; 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Mensing, H.; Pontz, B. F.; Muller, P. K., et al. A study on fibroblast chemotaxis using fibronectin and conditioned medium as chemoattractants. Eur. J. Cell Biol. 29: 268–273; 1983.

    PubMed  CAS  Google Scholar 

  47. Merwin, J. R.; Anderson, J.; Madri, J. A. Transforming growth factor-beta induces angiogenesis of microvascular endothelial cells in three-dimensional culture. J. Cell Biol. 107: 48a; 1988.

    Google Scholar 

  48. Mignatti, P.; Tsuboi, R.; Robbins, E., et al. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108: 671–682; 1989.

    Article  PubMed  CAS  Google Scholar 

  49. Morrison, R. S.; Sharma, A.; De Vellis, J., et al. Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. PNAS USA 83: 7537–7541; 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Montesano, R.; Orci, L. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: Implications for wound healing. PNAS USA 85: 4894–4897; 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Moscatelli, D. Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine capillary endothelial cells. J. Cell Biol. 107: 753–759; 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Moscatelli, D.; Presta, M.; Rifkin, D. B., et al. Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis, and migration. PNAS USA 83:2091–2095; 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Mundy, G. R.; De Martino, S.; Rowe, D. W. Collagen and collagen-derived fragments are chemotactic for tumor cells. J. Clin. Invest. 68: 1102–1105; 1981.

    PubMed  CAS  Google Scholar 

  54. Ozaki, T.; Yoshida, K.; Ushijima, K., et al. Studies on the mechanisms of invasion in cancer. II. In vivo effects of a chemotactic factor on cancer cells. Int. J. Cancer 7: 93–100; 1971.

    Article  PubMed  CAS  Google Scholar 

  55. Peyrieras, N.; Hayfil, F.; Louvard, D., et al. Uvomorulin: a nonintegral membrane protein of early mouse embryo. PNAS USA 80: 6274–6277; 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Postlethwaite, A. E.; Keski-Oja, J.; Moses, H. L. et al. Stimulation of chemotactic migration of human fibroblasts by transforming growth factor beta. J. Exp. Med. 165: 251–256; 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Postlethwaite, A. E.; Keski-Oja, J.; Ballian, G., et al. Induction of fibroblast chemotaxis by fibronectin. J. Exp. Med. 153: 494–499; 1981.

    Article  PubMed  CAS  Google Scholar 

  58. Postlethwaite, A. E.; Seyer, J. M.; Kang, A. H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. PNAS USA 75: 871–875; 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Postlethwaite, A. E.; Snyderman, R.; Kang, A. H. The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J. Exp. Med. 144: 1188–1203; 1976.

    Article  PubMed  CAS  Google Scholar 

  60. Roberts, A. B.; Sporn, M. B.; Assoian, R. K., et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesisin vivo and stimulation of collagen formationin vitro. PNAS USA 83: 4167–4171; 1986.

    Article  PubMed  CAS  Google Scholar 

  61. Rosen, E. M.; Goldberg, I. D.; Kacinski, B. M., et al. Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell Dev. Biol. 25: 163–173; 1989.

    PubMed  CAS  Google Scholar 

  62. Rosen, E. M.; Meromsky, L.; Setter, E., et al. Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp. Cell Res. In press.

  63. Rosen, E. M.; Meromsky, L.; Setter, E., et al. Smooth muscle-derived factor stimulates mobility of human tumor cells. Invasion and Metastasis. In press.

  64. Rovasio, R. A.; Delouvee, A.; Yamada, K. M., et al. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. J. Cell Biol. 96:462–473; 1983.

    Article  PubMed  CAS  Google Scholar 

  65. Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238:491–497; 1987.

    Article  PubMed  CAS  Google Scholar 

  66. Saksela, S.; Moscatelli, D.; Sommer, A., et al. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107: 743–751; 1988.

    Article  PubMed  CAS  Google Scholar 

  67. Sato, Y.; Rifkin, D. B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J. Cell Biol. 107:1199–1205; 1988.

    Article  PubMed  CAS  Google Scholar 

  68. Schiffman, E. Leukocyte chemotaxis. Ann. Rev. Physiol. 44: 553–568; 1982.

    Article  Google Scholar 

  69. Schor, S. L.; Schor, A. M. Fetal-to-adult transitions in fibroblast phenotype: their possible relevance to the pathogenesis of cancer. J. Cell Sci. Suppl. 8:165–180; 1987.

    PubMed  CAS  Google Scholar 

  70. Schor, S. L.; Schor, A. M.; Grey, A. M. et al. Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J. Cell Sci. 90:391–399; 1988.

    PubMed  CAS  Google Scholar 

  71. Senior, R. M.; Griffin, G. L.; Huang, J. S., et al. Chemotactic activity of platelet alpha granule proteins for fibroblasts. J. Cell Biol. 96:382–385; 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Senior, R. M.; Griffin, G. L.; Mecham, R. P. Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J. Clin. Invest. 70:614–618; 1982.

    Article  PubMed  CAS  Google Scholar 

  73. Seppa, H.; Grotendorst, G.; Seppa, S., et al. Platelet-derived growth factor is chemotactic for fibroblasts. J. Cell Biol. 92:584–588; 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Seppa, H. E. J.; Yamada, K. M.; Seppa, S. T., et al. The cell binding fragment of fibronectin is chemotactic for fibroblasts. Cell Biol. Int. Rep. 5:813–819; 1981.

    Article  PubMed  CAS  Google Scholar 

  75. Sholley, M. M.; Ferguson, G. P.; Seibel, H. R., et al. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 54:624–634; 1984.

    Google Scholar 

  76. Sholley, M. M.; Gimbrone, M. A., Jr.; Cotran, R. S. Cellular migration and replication in endothelial regeneration: a study using irradiated endothelial cultures. Lab. Invest. 36: 18–25; 1977.

    PubMed  CAS  Google Scholar 

  77. Sporn, M. B.; Roberts, A. B.; Wakefield, L. M., et al. Transforming growth factor-beta: biologic function and chemical structure. Science 233:532–534; 1986.

    Article  PubMed  CAS  Google Scholar 

  78. Stenn, K. Epibolin: a protein of human plasma that supports epithelial cell movement. PNAS USA 78:6907–6911; 1981.

    Article  PubMed  CAS  Google Scholar 

  79. Stenn, K. S.; Madri, J. A.; Tinghitella, T., et al. Multiple mechanisms of dissociated epidermal cell spreading. J. Cell Biol. 96:63–67; 1983.

    Article  PubMed  CAS  Google Scholar 

  80. Stoker, M. Effect of scatter factor on mobility of epithelial cells and fibroblasts. J. Cell Physiol. 139: 565–569; 1989.

    Article  PubMed  CAS  Google Scholar 

  81. Stoker, M.; Gherardi, E.; Perryman, M., et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327:239–242; 1987.

    Article  PubMed  CAS  Google Scholar 

  82. Stoker, M.; Gherardi, E. Factors affecting epithelial interactions. Ciba Foundation Symposium 125. Chichester, Wiley, 1987:217–235.

    Google Scholar 

  83. Stoker, M.; Perryman, M. An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77:209–223; 1985.

    PubMed  CAS  Google Scholar 

  84. Stracke, M. L.; Guirguis, R.; Liotta, L. A., et al. Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells. Biochem. Biophys. Res. Comm. 146:339–345; 1987.

    Article  PubMed  CAS  Google Scholar 

  85. Stracke, M. L.; Kohn, E. C.; Aznavoorian, S. A., et al. Insulin-like growth factors stimulate chemotaxis in human melanoma cells. Biochem. Biophys. Res. Comm. 153:1076–1083; 1988.

    Article  PubMed  CAS  Google Scholar 

  86. Teitel, J. M. Specific inhibition of endothelial cell proliferation by isolated endothelial plasma membranes. J. Cell Physiol. 128:329–336; 1986.

    Article  PubMed  CAS  Google Scholar 

  87. ten Dijke, P.; Iwata, K. K. Growth factors and wound healing. Biotechnology 7:793–798; 1989.

    Article  Google Scholar 

  88. Terranova, V. P.; DiFlorio, R.; Lyall, R. M., et al. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol. 101:2330–2334; 1985.

    Article  PubMed  CAS  Google Scholar 

  89. Terranova, V. P.; Rohrbach, D. H.; Martin, G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 22:719–726; 1980.

    Article  PubMed  CAS  Google Scholar 

  90. Thomas, K. A. Fibroblast growth factors. FASEB J1:434–440; 1987.

    PubMed  CAS  Google Scholar 

  91. Vlodavsky, I.; Folkman, J.; Sullivan, R., et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. PNAS USA 84:2292–2296; 1987.

    Article  PubMed  CAS  Google Scholar 

  92. Wahl, S. M.; Hunt, D. A.; Wakefield, L. M., et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. PNAS USA 84:5788–5792; 1987.

    Article  PubMed  CAS  Google Scholar 

  93. Walicke, P.; Cowan, W. M.; Ueno, N., et al. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. PNAS USA 83:3012–3016; 1986.

    Article  PubMed  CAS  Google Scholar 

  94. Wong, M. K.; Gottlieb, A. I. The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization. J. Cell Biol. 107:1777–1783; 1988.

    Article  PubMed  CAS  Google Scholar 

  95. Yamada, K. M. Cell surface interactions with extracellular materials. Ann. Rev. Biochem. 12: 761–799; 1983.

    Article  Google Scholar 

  96. Yoshida, K.; Ozaki, T.; Ushijima, K., et al. Studies on the mechanisms of invasion in cancer. I. Isolation and purification of a factor chemotactic for cancer cells. Int. J. Cancer 6:123–132; 1970.

    Article  PubMed  CAS  Google Scholar 

  97. Zigmond, S. H.; Hirsch, J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137:387–410; 1973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, E.M., Goldberg, I.D. Protein factors which regulate cell motility. In Vitro Cell Dev Biol 25, 1079–1087 (1989). https://doi.org/10.1007/BF02621258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621258

Key words

Navigation