Skip to main content
Log in

Decrease in protein content and cell volume of cultured dog kidney epithelial cells during growth

Importance for transport measurements

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Protein content per cell and cell volume of the canine kidney epithelial cell line, MDCK, and one of its chemically induced tumorigenic transformants (T1) were examined during growth in serum-containing and serum-free, hormonally defined media. Both protein content per cell and cell volume (measured with 3-0-methyl-d-glucose) decreased when cell density increased. Significant inverse linear correlations were found between protein content (and cell volume) and the log of the cell number. Equations relating these variables were derived. No difference was detected between cells grown in serum-containing and in serum-free media. Results of22Na+ uptake experiments differed markedly when expressed as a function of cell number or as a function of protein content or cell volume. However, protein content and cell volume bore a constant relationship to one another, and expression of results as a function of protein content or cell volume yielded qualitatively similar results. These findings show that in MDCK cells, as in other cell lines, protein content and cell volume decrease markedly during growth and that these variation must be taken into account when expressing and interpreting the results of transport measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaush, C. R.; Hard, W. L.; Smith, T. F. Characterization of an established line of canine kidney cells (MDCK). Proc. Soc. Exp. Biol. Med. 122: 931–935; 1966.

    PubMed  CAS  Google Scholar 

  2. Rindler, M. J.; Chuman, L. M.; Shaffer, L.; Saier, M. H., Jr. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J. Cell Biol. 81: 635–648; 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Cereijido, M.; Robbins, E. S.; Dolan, W. J.; Rotunno, C. A.; Sabatini, D. D. Polarized monolayers formed by epithelial cells on permeate and translucent support. J. Cell Biol. 77: 853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Handler, J. S.; Perkins, F. M.; Johnson, J. P.; Studies of renal cell function using cell culture techniques Am. J. Physiol. 238: F1-F9; 1980.

    PubMed  CAS  Google Scholar 

  5. Misfeldt, D. S.; Hamamoto, S. T.; Pitelka, D. R. Transepithelial transport in cell culture (renal epithelium). Proc. Natl. Acad. Sci. USA 73: 1212–1216; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Rindler, M. J.; Taub, M.; Saier, M. H., Jr. Uptake of22Na by cultured dog kidney cells. J. Biol. Chem. 254: 11431–11439; 1979.

    PubMed  CAS  Google Scholar 

  7. Taub, M.; Saier, M. H., Jr. Regulation of22Na transport by calcium in an established kidney epithelial cell line. J. Biol. Chem. 254: 11440–11444; 1979.

    PubMed  CAS  Google Scholar 

  8. Taub, M.; Chuman, L.; Saier, M. H., Jr.; Sato, G. Growth of madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76: 3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Foster, D. O.; Pardee, A. B. Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J. Biol. Chem. 244: 2675–2681; 1969.

    PubMed  CAS  Google Scholar 

  10. Kimball, R. F.; Perdue, S. W.; Chu, E. H. Y.; Ortiz, J. R. Microphotometric and autoradiographic studies on the cell cycle and cell size during growth and decline of Chinese hamster cell cultures. Exp. Cell Med. 66: 17–32; 1971.

    Article  CAS  Google Scholar 

  11. Kimelberg, H. K.; Mayhew, E. Cell growth and ouabain-sensitive86Rb+ uptake and (Na++K+-ATPase activity in 3T3 and SV40 transformed 3T3 fibroblast. Biochim. Biophys. Acta 45: 865–875; 1976.

    Google Scholar 

  12. Klevecz, R. R.; Ruddle, F. H. Cyclic changes in enzyme activity in synchronized mammalian cell cultures. Science 159: 634–636; 1968.

    Article  PubMed  CAS  Google Scholar 

  13. Mauro, F.; Grasso, A.; Tollmach, L. J. Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys. J. 9: 1377–1397; 1969.

    Article  PubMed  CAS  Google Scholar 

  14. Salzman, N. P. Systematic fluctuations in the cellular protein, RNA and DNA during growth of mammalian cell cultures. Biochim. Biophys. Acta 31: 158–163; 1959.

    Article  PubMed  CAS  Google Scholar 

  15. Spaggiare, S.; Wallach, M. J.; Tupper, J. T. Potassium transport in normal and transformed mouse 3T3 cells. J. Cell. Physiol. 89: 403–416; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Tsuboi, A.; Kurotsu, T.; Terasima, T. Changes in protein content per cell during growth of mouse L cells. Exp. Cell Res. 103: 257–261; 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Volpe, P.; Eremenko-Volpe T. Quantitative studies on cell proteins in suspension cultures. Eur. J. Biochem. 12: 195–200; 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  19. Kletzien, R. F.; Pariza, M. W.; Becker, J. E.; Potter, V. R. A method using 3-0-methyl-d-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal. Biochem. 68: 537–544; 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Saier, M. H., Jr Growth and differentiated properties of an established kidney epithelial cell line (MDCK). Am. J. Physiol. 240: C106-C109; 1980.

    Google Scholar 

  21. Rindler, M. J.; McRoberts, J.; Saier, M. H., Jr. Na+, K+ co-transport in dog kidney epithelial cells (MDCK) (abstr.). J. Supramol. Struct 4: 86: 1980.

    Google Scholar 

  22. Parnes, J. R.; Isselbacher, K. J. Transport alterations in virus-transformed cells. Prog. Exp. Tumor Res. 22: 79–122; 1978.

    PubMed  CAS  Google Scholar 

  23. Bakker-Grunwald, T. Effect of anions on potassium self-exchange in ascites tumor cells. Biochim. Biophys. Acta 513: 292–295; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Chipperfield, A. R. An effect of chloride on (Na+K) co-transport in red blood cells. Nature 286: 281–282; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Dunham, P. B.; Stewart, G. W.; Ellory, J. C. Chloride-activated passive potassium transport in human erythrocytes. Proc. Natl. Acad. Sci. USA 77: 1711–1715; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by USPHS Grant 5 R01 AM 21994-02 and NIH Grant AM 21506. S. E. was an Eli Lilly International Fellow and also supported by NATO and the Roussel-Uclaf Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlinger, S., Saier, M.H. Decrease in protein content and cell volume of cultured dog kidney epithelial cells during growth. In Vitro 18, 196–202 (1982). https://doi.org/10.1007/BF02618571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618571

Key words

Navigation