Skip to main content
Log in

Cluster analysis and mathematical programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

Given a set of entities, Cluster Analysis aims at finding subsets, called clusters, which are homogeneous and/or well separated. As many types of clustering and criteria for homogeneity or separation are of interest, this is a vast field. A survey is given from a mathematical programming viewpoint. Steps of a clustering study, types of clustering and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential, and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic programming, graph theoretical algorithms, branch-and-bound, cutting planes, column generation and heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aggarwal, H. Imai, N. Katoh and S. Suri, Findingk points with minimum diameter and related problems,J. Algorithms 12 (1991) 38–56.

    Article  MATH  MathSciNet  Google Scholar 

  2. H.J. Bandelt and A.W.M. Dress, Weak hierarchies associated with similarity measures: An additive clustering technique,Bulletin Mathematical Biology 51 (1989) 133–166.

    MATH  MathSciNet  Google Scholar 

  3. F. Barahona, M. Junger and G. Reinelt, Experiments in quadratic 0–1 programming,Mathematical Programming 44 (1989) 127–137.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Barnhart, E.L. Johnson, G.L. Nemhauser and M.W.P. Savelsbergh, Branch and price: Column generation for solving huge integer programs, Computational Optimization Center COC-94-03, Georgia Institute of Technology, Atlanta, 1994; revised 1995.

    Google Scholar 

  5. J.-P. Barthelemy and A. Guénoche,Les Arbres et les Représentations des Proximités (Masson, Paris, 1988); English translation:Trees and Proximity Relations (Wiley, Chichester, UK, 1991).

    Google Scholar 

  6. R. Bellman, A note on cluster analysis and dynamic programming,Math. Biosci. 18 (1973) 311–312.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.P. Benzecri, Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques, Les Cahiers de l’Analyse des Données VII (2) (1982) 209–218.

    Google Scholar 

  8. U. Bertole and F. Brioschi,Nonserial Dynamic Programming (Academic Press, New York, 1972).

    Google Scholar 

  9. P. Bertrand, Structural Properties of Pyramidal Clustering, in: I. Cox, P. Hansen and B. Julesz, eds.,Partitioning Data Sets (American Mathematical Society, Providence, RI, 1995) 35–53.

    Google Scholar 

  10. J.C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum, New York, 1981).

    MATH  Google Scholar 

  11. E. Boros and P.L. Hammer, On clustering problems with connected optima in Euclidean spaces,Discrete Mathematics 75 (1989) 81–88.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Brucker, On the complexity of clustering problems, in: M. Beckmann and H.P. Kunzi, eds.,Optimization and Operations Research, Lecture Notes in Economics and Mathematical Systems, Vol. 157 (Springer, Heidelberg, 1978) 45–54.

    Google Scholar 

  13. M. Bruynooghe, Classification ascendante hiérarchique des grands ensembles de données: Un algorithme rapide fondé sur la construction des voisinages réductibles, Les Cahiers de l’Analyse des Données 3 (1978) 7–33.

    Google Scholar 

  14. P. Buneman, The recovery of trees from measures of dissimilarity, in: F.R. Hodson, D.G. Kendall and P. Tautu, eds.,Mathematics in Archeological and Historical Sciences (Edinburgh University Press, Edinburgh, 1971) 387–395.

    Google Scholar 

  15. G.L. Leclerc, Comte de Buffon, Histoire Naturelle, Premier discours: De la Manière d’Étudier et de Traiter l’Histoire Naturelle (Paris, 1749).

  16. V. Capoyleas, G. Rote and G. Woeginger, Geometric clusterings, J. Algorithms 12 (1991) 341–356.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.L. Chandon, J. Lemaire and J. Pouget, Construction de l’ultramétrique la plus proche d’une dissimilarité au sens des moindres carrés, RAIRO-Recherche Opérationnelle 14 (1980) 157–170.

    MATH  MathSciNet  Google Scholar 

  18. M.S. Chang, C.Y. Tang and R.C.T. Lee, A unified approach for solving bottleneckk-bipartition problems, in:Proceedings of the 19th Annual Computer Science Conference (ACM, San Antonio, TX, 1991) 39–47.

    Chapter  Google Scholar 

  19. S. Chopra and M.R. Rao, On the multiway cut polyhedron, Networks 21 (1991) 51–89.

    MATH  MathSciNet  Google Scholar 

  20. S. Chopra and J.H. Owen, Extended formulations for theA-cut problem,Mathematical Programming 73 (1996) 17–30.

    MathSciNet  Google Scholar 

  21. V. Chvatal,Linear Programming (Freeman, New York, 1983).

    MATH  Google Scholar 

  22. N. Christofides,Graph Theory. An Algorithmic Approach (Academic Press, London, 1975).

    MATH  Google Scholar 

  23. R.M. Cormack, A review of classification (with discussion),J. Royal Statistical Society. Series A 134 (1971) 321–367.

    Article  MathSciNet  Google Scholar 

  24. Y. Crama, P. Hansen and B. Jaumard, The basic algorithm for pseudo-Boolean programming revisited,Discrete Applied Mathematics 29 (1990) 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Datta, H.-P. Lenhof, Ch. Schwarz and M. Smid, Static and dynamic algorithms fork-point clustering problems, J. Algorithms 19 (1995) 474–503.

    Article  MATH  MathSciNet  Google Scholar 

  26. W.H.E. Day and H. Edelsbrunner, Efficient algorithms for agglomerative hierarchical clustering methods, J. Classification 1 (1984) 7–24.

    Article  MATH  Google Scholar 

  27. M. Delattre and P. Hansen, Classification d’homogénéité maximum, in:Actes du Colloque Analyse de Données et Informatique, INRIA 1 (1977) 99–104.

  28. M. Delattre and P. Hansen, Bicriterion cluster analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1980) 277–291.

    MATH  Google Scholar 

  29. G. De Soete, A least squares algorithm for fitting additive trees to proximity data,Psychometrika 48 (1983) 621–626.

    Article  Google Scholar 

  30. G. De Soete, A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix,Pattern Recognition Letters 2 (1984) 133–137.

    Article  Google Scholar 

  31. G. De Soete, Ultrametric tree representation of incomplete dissimilarity data,J. Classification 1 (1984) 235–242.

    Article  Google Scholar 

  32. G. De Soete, Additive tree representations of incomplete dissimilarity data,Quality and Quantity 18 (1984) 387–393.

    Article  Google Scholar 

  33. J. Desrosiers, F. Soumis and M. Desrochers, Routing with time windows by column generation,Networks 14 (1984) 545–565.

    MATH  Google Scholar 

  34. E. Diday, From data to knowledge: Probabilistic objects for a symbolic data analysis, in: I. Cox, P. Hansen and B. Julesz, eds.,Partitioning Data Sets (American Mathematical Society, Providence, RI, 1995) 35–53.

    Google Scholar 

  35. E. Diday, Orders and overlapping clusters by pyramids, Research Report, 730, INRIA, France, 1987.

    Google Scholar 

  36. G. Diehr, Evaluation of a branch and bound algorithm for clustering,SIAM J. Scientific and Statistical Computing 6 (1985) 268–284.

    Article  MATH  Google Scholar 

  37. W. Dinkelbach, On nonlinear fractional programming,Management Science 61 (1995) 195–212.

    Google Scholar 

  38. A. Dodge and T. Gafner, Complexity relaxation of dynamic programming for cluster analysis, in: E. Diday et al., eds.,New Approaches in Classification and Data Analysis, Studies in Classification, Data Analysis, and Knowledge Organization (1994) 220–227.

  39. U. Dorndorf and E. Pesch, Fast clustering algorithms,ORSA J. Computing 6 (1994) 141–153.

    MATH  Google Scholar 

  40. O. du Merle, D. Villeneuve, J. Desrosiers and P. Hansen, Stabilization dans le cadre de la génération de colonnes, Les Cahiers du GERAD G-97-08 (1997).

  41. O. du Merle, P. Hansen, B. Jaumard and N. Mladenović, An interior point algorithm for minimum sum-of-squares clustering, in preparation.

  42. D. Erlenkotter, A dual-based procedure for uncapacitated facility location,Operations Research 26 (1978) 1590–1602.

    MathSciNet  Google Scholar 

  43. C.C Ferreira, A. Martin, C.C. De Souza, R. Weissmantel and L.A. Wolsey, Formulation and valid inequalities for the node capacitated graph partitioning problem,Mathematical Programming 74 (1996) 247–266.

    Article  MathSciNet  Google Scholar 

  44. R. Garfinkel, A.W. Neebe and M.R. Rao, An algorithm for theM-median plant location problem,Transportation Science 8 (1974) 217–236.

    MathSciNet  Google Scholar 

  45. O. Gascuel and D. Levy, A reduction algorithm for approximating a (non-metric) dissimilarity by a tree distance,J. Classification 13 (1996) 129–155.

    Article  MATH  MathSciNet  Google Scholar 

  46. S. Gelinas, P. Hansen and B. Jaumard, A labelling algorithm for minimum sum of diameters partitioning of graphs, in: I. Cox, P. Hansen and B. Julesz, eds.,Partitioning Data Sets (American Mathematical Society, Providence, RI, 1995) 89–96.

    Google Scholar 

  47. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem,Operations Research 9 (1961) 849–859.

    MATH  MathSciNet  Google Scholar 

  48. A.D. Gordon,Classification: Methods for the Exploratory Analysis of Multivariate Data (Chapman and Hall, New York, 1981).

    MATH  Google Scholar 

  49. A.D. Gordon, A review of hierarchical classification, J. Royal Statistical Society 150 (1987) 119–137.

    MATH  Google Scholar 

  50. J.C. Gower and G.J.S. Ross, Minimum spanning trees and single linkage cluster analysis,Applied Statistics 18 (1969) 54–64.

    Article  MathSciNet  Google Scholar 

  51. M. Grötschel and Y. Wakabayashi, A cutting plane algorithm for a clustering problem,Mathematical Programming 45 (1989) 59–96.

    Article  MATH  MathSciNet  Google Scholar 

  52. M. Grötschel and Y. Wakabayashi, Facets of the clique partitioning polytope,Mathematical Programming 47 (1990) 367–387.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. Guénoche, Partitions with minimum diameter, in:Proceedings of the International Conference of the Federation of Classification Societies (Charlottesville, USA, 1989).

  54. A. Guénoche, Enumération des partitions de diamètre minimum,Discrete Mathematics 111 (1993) 277–287.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Guénoche, P. Hansen and B. Jaumard, Efficient algorithms for divisive hierarchical clustering with the diameter criterion,J. Classification 8 (1991) 5–30.

    MATH  MathSciNet  Google Scholar 

  56. P.L. Hammer, P. Hansen and B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization,Mathematical Programming 28 (1984) 121–155.

    Article  MATH  MathSciNet  Google Scholar 

  57. P. Hanjoul and D. Peeters, A comparison of two dual-based procedures for solving thep-median problem,European Journal of Operations Research 20 (1985) 387–396.

    Article  MATH  MathSciNet  Google Scholar 

  58. P. Hansen and M. Delattre, Complete-link cluster analysis by graph coloring,J. American Statistical Association 73 (1978) 397–403.

    Article  Google Scholar 

  59. P. Hansen and B. Jaumard, Minimum sum of diameters clustering,J. Classification 4 (1987) 215–226.

    Article  MATH  MathSciNet  Google Scholar 

  60. P. Hansen, B. Jaumard and E. da Silva, Average-linkage divisive hierarchical clustering,Les Cahiers du GERAD, G-91-55 (1991); also in:J. Classification, to appear.

  61. P. Hansen, B. Jaumard and O. Frank, Maximum sum-of-splits clustering,J. Classification 6 (1989) 177–193.

    Article  MATH  MathSciNet  Google Scholar 

  62. P. Hansen, B. Jaumard, S. Krau and O. du Merle, A stabilized column generation algorithm for the Weber multisource problem, in preparation.

  63. P. Hansen, B. Jaumard and V. Mathon, Constrained nonlinear 0–1 programming,ORSA J. Computing 5 (1993) 97–119.

    MATH  MathSciNet  Google Scholar 

  64. P. Hansen, B. Jaumard and C. Meyer, Exact sequential algorithms for additive clustering, Les Cahiers du GERAD (1997), to appear.

  65. P. Hansen, B. Jaumard and N. Mladenovic, How to choosek entities amongN, in: I. Cox, P. Hansen and B. Julesz, eds.,Partitioning Data Sets (American Mathematical Society, Providence, RI, 1995) 105–116.

    Google Scholar 

  66. P. Hansen, B. Jaumard and M. Poggi De Aragão, Mixed-integer column generation algorithms and the probabilistic maximum satisfiability problem, in: E. Balas, G. Cornejols and R. Kannan, eds.,Proceedings of the Second IPCO Conference (Carnegie-Mellon University, 1992) 165–180.

  67. P. Hansen, B. Jaumard and E. Sanlaville, Weight constrained minimum sum-of-stars clustering,Les Cahiers du GERAD, G-93-38 (1993); also in:J. Classification, to appear.

  68. P. Hansen, B. Jaumard and E. Sanlaville, Partitioning problems of cluster analysis: A review of mathematical programming approaches, in: E. Diday et al., eds.,New Approaches in Classification and Data Analysis (Springer, Berlin, 1994) 228–240.

    Google Scholar 

  69. P. Hansen, B. Jaumard and B. Simeone, Espaliers, A generalization of dendrograms,J. Classification 13 (1996) 107–127.

    Article  MATH  MathSciNet  Google Scholar 

  70. P. Hansen, B. Jaumard and B. Simeone, Polynomial algorithms for nested univariate clustering,Les Cahiers du GERAD, G-96-28 (1996).

    Google Scholar 

  71. P. Hansen, M. Minoux and M. Labbe, Extension de la programmation linéaire généralisée au cas des programmes mixtes,Comptes Rendus de l’Académie des Sciences 305 (1987) 569–572.

    MATH  MathSciNet  Google Scholar 

  72. P. Hansen and N. Mladenovic, Variable neighborhood search,Les Cahiers du GERAD, G-96-49 (1996); also in:Computers and Operations Research, to appear.

  73. J.A. Hartigan,Clustering Algorithms (Wiley, New York, 1975).

    MATH  Google Scholar 

  74. J. Hershberger, Minimizing the sum of diameters efficiently,Computational Geometry: Theory and Applications 2 (1992) 111–118.

    MATH  MathSciNet  Google Scholar 

  75. L.J. Hubert, Some applications of graph theory to clustering,Psychometrika 39 (1974) 283–309.

    Article  MATH  MathSciNet  Google Scholar 

  76. L.J. Hubert, Min and max hierarchical clustering using asymmetric similarity measures,Psychometrika 38 (1973) 63–72.

    Article  MATH  Google Scholar 

  77. L.J. Hubert and P. Arabie, Iterative projection strategies for the least-squares fitting of tree structure to proximity data,The British Journal of Mathematical and Statistical Psychology 48 (1995) 281–317.

    MATH  Google Scholar 

  78. F.K. Hwang, U.G. Rothblum and Y.-C. Yao, Localizing combinatorial properties of partitions, AT&T Bell Labs Report, 1995.

  79. M. Jambu,Classification Automatique pour l’Analyse des Données, Tome 1 (Dunod, Paris, 1976).

    Google Scholar 

  80. M. Jambu,Exploratory and Multivariate Data Analysis (Academic Press, New York, 1991).

    MATH  Google Scholar 

  81. R.E. Jensen, A dynamic programming algorithm for cluster analysis,Operations Research 17 (1969) 1034–1057.

    MATH  Google Scholar 

  82. E.L. Johnson, A. Mehrotra and G.L. Nemhauser, Min-cut clustering,Mathematical Programming 62 (1993) 133–151.

    Article  MathSciNet  Google Scholar 

  83. L. Kaufman and P.J. Rousseeuw,Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, New York, 1990).

    Google Scholar 

  84. G. Klein and J.E. Aronson, Optimal clustering: a model and method,Naval Research Logistics 38 (1991) 447–461.

    MATH  Google Scholar 

  85. W.L.G. Koontz, P.M. Narendra and K. Fukunaga, A Branch and bound clustering algorithm,IEEE Transactions Computers 24 (1975) 908–915.

    MATH  MathSciNet  Google Scholar 

  86. M. Krivanek and J. Moravek, NP-hard problems in hierarchical-tree clustering,Acta Informatica 23 (1986) 311–323.

    Article  MATH  MathSciNet  Google Scholar 

  87. G.N. Lance and W.T. Williams, A general theory of classificatory sorting strategies. 1. Hierarchical systems,The Computer Journal 9 (1967) 373–380.

    Google Scholar 

  88. B. Leclerc, Description combinatoire des ultramétriques,Mathématiques et Sciences Humaines 73 (1981) 5–37.

    MathSciNet  Google Scholar 

  89. J.K. Lenstra, Clustering a data array and the traveling salesman problem,Operations Research 22 (1974) 413–414.

    MATH  Google Scholar 

  90. J.F. Marcotorchino and P. Michaud,Optimisation en Analyse Ordinale des Données (Masson, Paris, 1979).

    Google Scholar 

  91. D.W. Matula and L.L. Beck, Smallest-last ordering and clustering and graph-coloring algorithms,J. ACM 30 (1983) 417–427.

    Article  MATH  MathSciNet  Google Scholar 

  92. W.T. McCormick Jr, P.J. Schweitzer and T.W. White, Problem decomposition and data reorganization by a clustering technique,Operations Research 20 (1972) 993–1009.

    Article  MATH  Google Scholar 

  93. M. Minoux and E. Pinson, Lower bounds to the graph partitioning problem through generalized linear programming and network flows,RAIRO Recherche Opérationnelle 21 (1987) 349–364.

    MATH  MathSciNet  Google Scholar 

  94. G.W. Milligan and M.C. Cooper, An examination of procedures for determining the number of clusters in data set,Psychometrika 50 (1985) 159–179.

    Article  Google Scholar 

  95. B. Mirkin, Additive clustering and qualitative factor analysis methods for similarity matrices,J. Classification 4 (1987) 7–31, (Erratum 6, 271–272).

    Article  MATH  MathSciNet  Google Scholar 

  96. B. Mirkin,Mathematical Classification and Clustering (Kluwer, Dordrecht, 1996).

    MATH  Google Scholar 

  97. C. Monma and S. Suri, Partitioning points and graphs to minimize the maximum or the sum of diameters, in: Y. Alavi, G. Chartrand, O.R. Oellerman and A.J. Schwenk, eds.,Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991) 899–912.

    Google Scholar 

  98. F. Murtagh, A survey of recent advances in hierarchical clustering algorithms,The Computer Journal 26 (1983) 329–340.

    Google Scholar 

  99. J. Ponthier, A.-B. Dufour and N. Normand, Le Modèle Euclidien en Analyse des Données (Ellipses, Paris, 1990).

    Google Scholar 

  100. A.W. Neebe and M.R. Rao, An algorithm for the fixed-charge assignment of users to sources problem,J. Operations Research Society 34 (1983) 1107–1113.

    Article  MATH  Google Scholar 

  101. G. Palubeckis, A branch-and-bound approach using polyhedral results for a clustering problem,INFORMS J. Computing 9 (1997) 30–42.

    MATH  MathSciNet  Google Scholar 

  102. M.R. Rao, Cluster analysis and mathematical programming,J. American Statistical Association 66 (1971) 622–626.

    Article  MATH  Google Scholar 

  103. C.R. Reeves, ed.,Modern Heuristic Techniques for Combinatorial Problems (Blackwell, London, 1993).

    MATH  Google Scholar 

  104. S. Régnier, Sur quelques aspects mathématiques des problèmes de classification,ICC Bulletin 4 (1965) 175–191; reprinted in:Mathématiques et Sciences Humaines 82 (1983) 85–111.

    Google Scholar 

  105. P. Rosenstiehl, L’arbre minimum d’un graphe, in: P. Rosenstiehl, ed.,Théorie des Graphes (Dunod, Paris, 1967) 357–368.

    Google Scholar 

  106. A. Rusch and R. Wille, Knowledge spaces and formal concept analysis, in: H. Boch and W. Polasek, eds.,Data Analysis and Information Systems (Springer, Berlin, 1996) 427–436.

    Google Scholar 

  107. D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, in: A. Wren, ed.,Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (North-Holland, Amsterdam, 1981) 269–280.

    Google Scholar 

  108. R.N. Shepard and P. Arabie, Additive clustering representation of similarities as combinations of discrete overlapping properties,Psychol. Rev. 86 (1979) 87–123.

    Article  Google Scholar 

  109. H. Späth,Cluster Analysis Algorithms for Data Reduction and Classification of Objects (Ellis Horwood, Chichester, UK, 1980).

    MATH  Google Scholar 

  110. L.E. Stanfel, A recursive Lagrangian method for clustering problems,European Journal of Operations Research 27 (1986) 332–342.

    Article  MATH  Google Scholar 

  111. P.H.A. Sneath and R.R. Sokal,Numerical Taxonomy (Freeman, San Francisco, 1973).

    MATH  Google Scholar 

  112. R.E. Tarjan, An improved algorithm for hierarchical clustering using strong components,Information Processing Letters 17 (1983) 37–41.

    Article  MATH  MathSciNet  Google Scholar 

  113. F. Vanderbeck, Decomposition and column generation for integer programs, Ph.D. Thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain, Louvain-la-Neuve, 1994.

    Google Scholar 

  114. H.D. Vinod, Integer programming and the theory of grouping,J. American Statistical Association 64 (1969) 506–519.

    Article  MATH  Google Scholar 

  115. W.J. Welch, Algorithmic complexity — Three NP-hard problems in computational statistics,J. Statistical Computing 15 (1982) 68–86.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hansen.

Additional information

Research supported by ONR grant N00014-95-1-0917, FCAR grant 95-ER-1048 and NSERC grants GP0105574 and GP0036426. The authors thank Olivier Gascuel and an anonymous referee for insightful remarks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, P., Jaumard, B. Cluster analysis and mathematical programming. Mathematical Programming 79, 191–215 (1997). https://doi.org/10.1007/BF02614317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614317

Keywords

Navigation