Skip to main content
Log in

Hyperbolic automorphisms of tori and pseudo-random sequences

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

A method for generating pseudo-random sequences of d-dimensional vectors is considered; it is based on theergodic theory of periodic orbits in the sense of [2] for unstable dynamical systems such as the hyperbolic automorphisms of the d-dimensional Torus. Since these systems enjoy strong chaotic properties, their orbits are both dense andchaotic in some sense, however the ergodic property holds only for orbits having initial points with irrational coordinates, the remaining ones being periodic. Unfortunately, those orbits are the only ones that a computer is able to generate. Since a pseudo-random sequence in [0,1]d is a long periodic orbit which has chaotic behaviour similar in some sense to the one of aperiodic orbits, in this note, we shall prove lower and upper bounds for the length of the period of orbits of the hyperbolic automorphisms of the d-dimensional Torus, expressed in terms of the (rational) starting point. The algorithms proposed are free of computational error, since they work in integer arithmetic. Surprisingly the elimination of the round off errors turns out in anincrease of the length of the period. Statistical testing and the problem of estimating the discrepancy of the obtained sequences are also treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Anosov,Geodesic flows on closed Riemann manifolds with negative curvature, Tr. Mat. Inst. Steklov 90, (in Russian). English transl.: Proc. Steklov Inst. Math. 90, (1967), 235.

    MathSciNet  Google Scholar 

  2. L. Accardi, F. De Tisi, A. Di Libero,Sistemi Dinamici Instabili e Generazione di Successioni Pseudo-casuali, C. N. R. Rassegna di Metodi Statistici ed Applicazioni, Cagliari, Giugno 1981.

    Google Scholar 

  3. V. I. Arnold, A. Avez,Ergodic problems of Classical Mechanisms (1968), Benjamin, New York.

    Google Scholar 

  4. R. L. Adler, B. Weiss,Similarity of automorphisms of the torus, Mem Amer. Math. Soc. 98, New York, 1968.

  5. N. Bouleau,On effective computation of expectations in large or infinite dimension, J. Comput. Appl. Math. 31 (1990), 23–34.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bowen,Markov partitions for axiom A diffeomorphisms, Am. J. Math. n. 92, (1970), 725–747.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphismus, Lecture Notes in Math., 470, Springer-Verlag 1975.

  8. K. L. Chung,An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67, (1949), 36–50.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Cugiani,Metodi Numerico statistici, 1980.

  10. G. Halasz,Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Hungar., 28, (1976), 389–395.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Kiefer,On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math., 11, (1961), 649–660.

    MATH  MathSciNet  Google Scholar 

  12. D. E. Knuth,The Art of Computer Programming, Vol. II, (1981), Addison-Wesley.

  13. U. Krengel,On the speed of convergence in the ergodic theorem, Monatsh. Math. 86, (1978), 3–6.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Niederreiter,Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, N. 6, (1978), 957–1041.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Niederreiter,Statistical independence properties of pseudorandom vectors produced by matrix generators, J. Comput. Appl. Math. 31, (1990), 139–151.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Niederreiter,Recent trends in random number and random vector generation, Ann. Oper. Res. 31, (1991), 323–346.

    Article  MATH  MathSciNet  Google Scholar 

  17. Ya. B. Pesin, Ya. G. Sinai,Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynamical Systems 2, (1982), 417–438.

    MATH  MathSciNet  Google Scholar 

  18. P. Sarnak,Asymptotic behaviour of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34, (1981), 719–739.

    MATH  MathSciNet  Google Scholar 

  19. Ya. G. Sinai (Ed.),Dynamical systems, Encyclopaedia of Mathematical Sciences, Vol. II (1989), Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abundo, M., Accardi, L. & Auricchio, A. Hyperbolic automorphisms of tori and pseudo-random sequences. Calcolo 29, 213–240 (1992). https://doi.org/10.1007/BF02576183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576183

Keywords

Navigation