Skip to main content
Log in

The volume conductor may act as a temporal filter on the ECG and EEG

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The influence of the volume conductor on the EEG, MEG, fetal ECG and fetal MCG is studied by means of simulations. The assumption that the Maxwell equations can be used in a quasi-static approximation is reconsidered and the fact that the conductivity of human tissue is frequency dependent is taken into account. It is found that displacement currents have a substantial effect on the fetal ECG and to a lesser degree on the fetal MCG. Moreover, the frequency dependence of the conductivity of the tissues within the head may have a considerable effect on the EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ferdjallah M., Bostick F. X. andBarr R. E. (1996): ‘Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model’,IEEE Trans. Biomed. Eng.,BME-43, pp. 939–943

    Article  Google Scholar 

  • Gabriel, S., Lau, R. W. andGabriel C. (1996a): ‘The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz’,Phys. Med. Biol.,41, pp. 2251–2269

    Article  Google Scholar 

  • Gabriel, S., Lau, R. W. andGabriel, C. (1996b): ‘The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues’,Phys. Med. Biol.,41, pp. 2271–2293

    Article  Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967): ‘The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293

    Article  Google Scholar 

  • Kosterich, D. J., Foster, K. R. andPollack, S. R. (1983): ‘Dielectric permittivity and electrical conductivity of fluid saturated bone’,IEEE Trans. Biomed. Eng.,BME-30, pp. 81–86

    Google Scholar 

  • Law, S.K. (1993): ‘Thickness and resistivity variations over the upper surface of the human skull’,Brain Topography,6, pp. 99–109

    Article  Google Scholar 

  • Nicholson, P. W. (1965): ‘Specific impedance of cerebral white matter’,Exp. Neurol.,13, pp. 386–401

    Article  Google Scholar 

  • Oostendorp, T. F. (1989): ‘Modeling the fetal ECG’, PhD thesis, Catholic University of Nijmegen, The Netherlands

    Google Scholar 

  • Oostendorp, T. F., Oosterom, A. van andJomgsma, H. W. (1989): ‘Electrical properties of tissues involved in the conduction of foetal ECG’,Med. Biol. Eng. Comput.,27, pp. 322–324

    Article  Google Scholar 

  • Pethig, R. (1979): ‘Dielectric and electronic properties of biological materials’ (John Wiley & Sons, Chichester)

    Google Scholar 

  • Plonsey, R. andHeppner, D. B. (1967): ‘Considerations of quasistationarity in electrophysiological systems’,Bul. Math. Biophys.,29, pp. 657–664

    Article  Google Scholar 

  • Quinn, A., Weir, A. I., Shahani, U., Bain, R., Maas, P. andDonaldson, G. (1994): ‘Antenatal fetal magnetocardiography: a new method for fetal surveillance?’,Brit. J. Obstetr. Gynaecol.,101, pp. 866–870

    Google Scholar 

  • Ranck, J. B. Jr. (1963): ‘Specific impedance of rabbit cerebral cortex’,Exp. Neurol.,7, pp. 144–152

    Article  Google Scholar 

  • Robillard, P. N. andPoussart, Y. (1977): ‘Specific-impedance measurements of brain tissues’,Med. Biol. Eng. Comput.,15, pp. 438–445

    Article  Google Scholar 

  • Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R. andWebster, J. G. (1988): ‘Skin impedance from 1Hz to 1MHz’,IEEE Trans. Biomed. Eng.,35, pp. 649–651

    Article  Google Scholar 

  • Rush, S., Abildskov, J. A. andMcFee, R. (1963): ‘Resistivity of body tissues at low frequencies’,Circ. Res.,XII, pp. 40–50

    Google Scholar 

  • Schwan, H. P. (1957): ‘Electrical properties of tissue and cell suspensions’,in Tobias, C. A. (Ed.): ‘Advances in biological and medical physics’ (Academic Press, New York) pp. 147–209

    Google Scholar 

  • Schwan, H. P. andFoster, K. R. (1980): ‘RF-field interactions with biological systems: Electrical properties and biophysical mechanisms’,Proc. IEEE,68, pp. 104–113

    Article  Google Scholar 

  • Schwan, H. P. andKay, C. F. (1956): ‘Specific resistance of body tissues’,Circ. Res.,IV, pp. 664–670

    Google Scholar 

  • Stuchly, M. A. andStuchly, S. S. (1980): ‘Dielectric properties of biological substances—tabulated’,J. Microwave Power,15, pp. 19–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinstra, J.G., Peters, M.J. The volume conductor may act as a temporal filter on the ECG and EEG. Med. Biol. Eng. Comput. 36, 711–716 (1998). https://doi.org/10.1007/BF02518873

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02518873

Keywords

Navigation