Skip to main content
Log in

Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

Direct methods for computing the Moore-Penrose inverse of a matrix are surveyed, classified and tested. It is observed that the algorithms using matrix decompositions or bordered matrices are numerically more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A. and Wersan, S. J. (1963). An elimination method for computing the generalized inverse of an arbitrary complex matrix,Jour. ACM,10, 532–537.

    Article  MATH  MathSciNet  Google Scholar 

  2. Germain-Bonne, G. (1969). Calcul de pseudo-inverses,R.F.I.R.O., 3e année, NR-2/1969, 3–14.

  3. Glassey, C. R. (1966). An orthogonalization method of computing the generalized inverse of a matrix,Op. Res. Center, Univ. Calif.,Berkeley, ORC 66-10, (AD633061).

  4. Goldstein, M. J. (1968). Solving systems of linear equations by using the generalized inverse,USL Report No. 874, US Navy Underwater Sound Laboratory, (AD667727).

  5. Golub, G. H. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix,SIAM J. Numer. Anal., Ser. B,2 No. 2, 205–224.

    Article  MATH  MathSciNet  Google Scholar 

  6. Golub, G. H. and Businger, P. (1967). Least squares, singular values and matrix approximations; An ALGOL procedure for computing the singular value decomposition, Technical Report No. CS73,Stanford University, Computer Science Department, (AD 662883).

  7. Golub, G. H. and Reinsch, C. (1970). Singular value decomposition and least squares solution,Numer. Math.,14, 403–420.

    Article  MATH  MathSciNet  Google Scholar 

  8. Greville, T. N. E. (1960). Some applications of the pseudo inverse of a matrix,SIAM Rev.,2, 15–22.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hestenes, M. R. (1958). Inversion of matrices by biorthogonalization and related results,J. SIAM,6, 51–90.

    MATH  MathSciNet  Google Scholar 

  10. Kublanovskaya, V. N. (1966). Evaluation of a generalized inverse matrix and projector,USSR Comp. Math. and. Math. Phys., 179–188.

  11. Noble, G. (1966). A method for computing the generalized inverse of a matrix,SIAM J. Number. Anal.,3, 582–584.

    Article  MATH  MathSciNet  Google Scholar 

  12. Penrose, R. (1955). A generalized inverse for matrices,Proc. Camb. Phil. Soc.,51, 406–413.

    MATH  MathSciNet  Google Scholar 

  13. Penrose, R. (1956). On best approximate solutions of linear matrix equations,Proc. Camb. Phil. Soc.,52, 17–19.

    Article  MATH  MathSciNet  Google Scholar 

  14. Peters, G. and Wilkinson, J. H. (1970). The least squares problem and pseudo-inverses,The Computer Journal,13, 309–316.

    Article  MATH  Google Scholar 

  15. Pyle, L. D. (1964). Generalized inverse computations using the gradient projection method,Jour. ACM,11, 422–428.

    Article  MATH  MathSciNet  Google Scholar 

  16. Rust, B., Burrus, W. R. and Schneeberger, C. (1966). A simple algorithm for computing the generalized inverse of a matrix,Comm. ACM,9, 381–387.

    Article  MATH  MathSciNet  Google Scholar 

  17. Tewarson, R. P. (1967). A direct method for generalized matrix inversion,SIAM J. Number. Anal.,4, 499–507.

    Article  MATH  MathSciNet  Google Scholar 

  18. Tewarson, R. P. (1968). A computational method for evaluating generalized inverses,The Computer Journal,10, 411–413.

    Article  MATH  MathSciNet  Google Scholar 

  19. Tewarson, R. P. (1969). On computing generalized inverses,Computing,4, 139–151.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

About this article

Cite this article

Shinozaki, N., Sibuya, M. & Tanabe, K. Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods. Ann Inst Stat Math 24, 193–203 (1972). https://doi.org/10.1007/BF02479751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479751

Keywords

Navigation