Skip to main content
Log in

Electrical potentials and ionic fluxes in ion exchangers: I. “n type” non-ideal systems with zero current

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

In this paper a derivation, based on the Nernst-Planck flux equations extended for non-ideal behavior, is given for the electrical potentials and cationic fluxes occurring across a one-phase ion exchange system separating two aqueous solutions. It is assumed that the activities of the cations in the exchanger are proportional to thenth power of their concentrations, a relationship of broad empirical validity. This paper deals only with the case of the quasi-stationary state in which no net electrical current flows. The profles of the cationic concentrations and of the diffusion potential in the exchanger are found to be, in general, exponential and linear respectively. An equation is derived for the stationary-state potential of an ion exchange phase interposed between two aqueous solutions containing mixtures of two cations. The potential selectivity constant of this equation is found to equal the product of the ion exchange equilibrium constant and thenth power of the mobility ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Dray, S., and K. Sollner. 1956. “A Theory of Dynamic Polyionic Potentials Across Membranes of Ideal Ionic Selectivity.”Biochim. Biophys. Acta,21, 126–136.

    Article  Google Scholar 

  • Eisenman, G. 1961. “On the Elementary Atomic Origin of Equilibrium Ionic Specificity.” InSymposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, Eds. New York: Academic Press.

    Google Scholar 

  • — 1962. “Cation Selective Glass Electrodes and Their Mode of Operation.”The Biophys. J.,2, Part 2, 259–323.

    Article  Google Scholar 

  • Eisenman, G., and G. Karreman. 1962. “On the Origins of the Potential of Cation Responsive Glass Electrodes.” Presented to the Kendall Award Symposium, American Chemical Society, Washington, D. C. To be published.

  • Eisenman, G., D. O. Rudin and J. U. Casby. 1957a. “Glass Electrode for Measuring Sodium Ion.”Sci.,126, 831–834.

    Google Scholar 

  • Eisenman, G., 1957b. “Principles of Specific Ion Interaction.” Presented to 10th Annual Conference on electrical Techniques in Medicine and Biology, Boston.

  • Goldman, D. E. 1943. “Potential, Impedance and Rectification in Membranes.”J. Gen. Physiol.,27, 37–60.

    Article  Google Scholar 

  • Helfferich, F. 1956. “Bi-ionic Potentials.”Disc. Faraday Soc.,21, 83–94.

    Article  Google Scholar 

  • — 1959.Ionenaustausher I. Weinheim/Bergstr: Verlag. Chemie. GMBH.

    Google Scholar 

  • — 1962.Ion Exchange. New York: McGraw-Hill.

    Google Scholar 

  • Hogfeldt, E. 1955. “On Ion Exchange Equilibria: III. An Investigation of some Empirical Equations.”Acta Chem. Scand.,9, 151–165.

    Article  Google Scholar 

  • Kedem, O., and A. Katchalsky. 1958. “Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes.”Biochim. Biophys. Acta,27, 229–246.

    Article  Google Scholar 

  • Ling, G. N. 1952. “The Role of Phosphate in the Maintenance of the Resting Potential and Selective Ionic Accumulation in Frog Muscle Cells.” InPhosphorous Metabolism, Vol. 2, W. D. McElroy and B. Glass. Eds., Baltimore: Johns Hopkins Press.

    Google Scholar 

  • — 1960. “The Interpretation of Selective Ionic Permeability and Cellular Potentials in Terms of the Fixed Charge Induction Hypothesis.”J. Gen. Physiol.,43, Suppl., 149–174.

    Article  Google Scholar 

  • — 1962.A Physical Theory of the Living State. New York: Blaisdell.

    Google Scholar 

  • Mackay, J. S., and P. Meares. 1960. “Ion-exchange Across a Cationic Membrane in Dilute Solutions.”Kolloid Z.,171, 139–149.

    Article  Google Scholar 

  • Meyer, K. H., and J. F. Sievers. 1936a. “The Permeability of Membranes: I. Theory of Onic Permeability.”Helv. Chim. Acta,19, 649–664.

    Article  Google Scholar 

  • —, 1936b. “The Permeability of Membranes: II. Experiments With Artificial Selective Membranes”Ibid.,,19, 665–677.

    Article  Google Scholar 

  • —, 1936c. “The Permeability of Membranes: IV. Analysis of the Structure of Vegetable and Mineral Membranes”Ibid.,,19, 987–995.

    Article  Google Scholar 

  • Neihof, R., and K. Sollner. 1956. “The Physical Chemistry of the Differential Rates of Permeation of Ions Across Porous Membranes.”Disc. Faraday Soc.,21, 1–8.

    Article  Google Scholar 

  • Nernst, W. 1888. “Zur Kinetik der in Lösung befindlichen Körper.”Zeits. f. Phys. Chem.,2, 613–637.

    Google Scholar 

  • — 1889. “Die Elektromotorische Wirksamkeit der Ionen”.Ibid.,,4, 129–181.

    Google Scholar 

  • Planck, M. 1890a. “Ueber die Erregung von Electricität und Wärme in Electrolyten.”Ann. Phys. und Chem.,39, 161–186.

    Google Scholar 

  • — 1890b. “Ueber die Potentialdifferenz zwischen Zwei verdünnten Lösungen binarer Electrolyte.”Ibid.,,39, 561–576.

    Google Scholar 

  • Rothmund, V., and G. Kornfeld. 1918. “Der Basenaustausch im Permutit I.”Z. f. Anorg. Chem.,103, 129–163.

    Article  Google Scholar 

  • Sollner, K. 1949a. “The Origin of Bi-ionic Potentials Across Porous Membranes of High Ionic Selectivity. I.”J. Phys. and Coll. Chem.,53, 1211–1226.

    Article  Google Scholar 

  • — 1949b. “The Origin of Bi-ionic Potentials Across Porous Membranes of High Ionic Selectivity. II.”Ibid.,,53, 1226–1239.

    Article  Google Scholar 

  • Staverman, A. J. 1951. “The Theory of Measurement of Osmotic Pressure.”Rec. Trav. Chim. Pays-Bas.,70, 344–352.

    Google Scholar 

  • Teorell, T. 1935a. “An Attempt to Formulate a Quantitative Theory of Membrane Permeability.”Proc. Soc. Exp. Biol. and Med.,33, 282–285.

    Google Scholar 

  • — 1935b. “Studies on the ‘Diffusion Effect’ Upon Ionic Distribution.”Proc. Nat. Acad. Sci.,21, 152–161.

    Article  Google Scholar 

  • — 1937. Remarks in general discussion in reference to the paper, “Artificial Membranes: Their Structure and Permeability,” by K. M. Meyer.Trans. Faraday Soc.,33, 1086–1087.

    Google Scholar 

  • — 1951. “Zur Quantitative Behandlung der membranpermeabilität.”Zeits. f. Elektrochemie und Angewandte Physik. Chem.,55, 460–469.

    Google Scholar 

  • Teorell, T. 1953. “Transport Processes and Electrical Phenomena in Ionic Membranes.” InProgress in Biophysics and Biophysical Chem., vol. 3, J. A. V. Butler and J. T. Randall, Eds.

  • Walton, H. F. 1949. “Ion Exchange Equilibria.” InIon Exchange, Theory and Application, F. C. Nachod, Ed. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karreman, G., Eisenman, G. Electrical potentials and ionic fluxes in ion exchangers: I. “n type” non-ideal systems with zero current. Bulletin of Mathematical Biophysics 24, 413–427 (1962). https://doi.org/10.1007/BF02477998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477998

Keywords

Navigation