Skip to main content
Log in

Compressive behaviour of concrete at high strain rates

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Experimental techniques commonly used for high strain-rate testing of concrete in compression, together with the methods used for measurement and recording of stress and strain, are critically assessed in the first part of this paper. The physical capability of each loading method is discussed and some consideration is given to the definitions used for specifying the loading rate. The second part reviews the dynamic compressive strength (mostly uniaxial rather than bi- or triaxial) of plain concrete, while in the third part a review on deformation behaviour indicates that uncertainty and disagreement exist concerning changes in axial strain at high strain rates.

Resume

Dans la première partie de ce rapport, on se livre à une évaluation critique des techniques expèrimentales génèralement employées pour l'essai du béton en compression à haute vitesse de déformation, ainsi que des méthodes utilisées pour mesurer et enregistrer la contrainte et la déformation. On discute le potentiel physique de chaque méthode de chargement, et on s'intéresse aux définitions utilisées pour la spécification de la vitesse de chargement. On examine, dans la deuxième partie, la résistance à la compression dynamique (principalement uniaxiale) du béton ordinaire, tandis que, dans la troisième partie, une étude du comportement en déformation indique qu'il existe des imprécisions et contradictions à propos des modifications de la déformation axiale à haute vitesse de déformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McHenry, D. and Shideler, J. J., ‘Review of data on effect of speed in mechanical testing of concrete’, in ‘Symposium on Speed of Testing of Non-Metallic Materials’ ASTM STP No. 185 (1956) pp. 72–82.

    Google Scholar 

  2. Abrahamsson, E., ‘Influence of dynamic loads on mechanical properties of concrete’ (summary in English),Nordisk Betong 6(4) (1962) 337–346.

    Google Scholar 

  3. Mainstone, R. J., ‘Properties of materials at high rates of straining or loading’,Matér. Constr. 8(44) (1975) 102–116.

    Google Scholar 

  4. Suaris, W. and Shah, S. P., ‘Mechanical properties of materials subjected to impact’, in ‘Concrete Structures under Impact and Impulsive Loading’, edited by G. Plauk, Introductory Report (BAM, Berlin, 1982) pp. 33–62.

    Google Scholar 

  5. Ammann, J. W., ‘Stahlbeton und Spannbetontragwerke unter Stossartiger Belastung’ (Reinforced and Prestressed Concrete Structures under Shock Loading), Dissertation No. 7285, Eidgenossischen T.H., Zurich (1983).

    Google Scholar 

  6. Dargel, H. L., ‘Zur Rechnerischen Analyse von Stahl-betontragwerken unter Stossartiger Beanspruchung: Berucksichtigung des Einfluss hoher Dehngeschwindigkeiten im Werkstoffgesetz’ (Numerical Analysis of Reinforced Concrete Structures under Shock Loading: Consideration of the Effect of Higher Strain Rates on the Constitutive Relationships), Dissertation, T.H. Darmstadt (1984).

  7. Gerstle, K. H., Linse, D. L., Bertacchi, P., Kotsovos, M. D., Ko, H. Y., Newman, J. B., Rossi, P., Schickert, G., Taylor, M. A., Traina, L. A., Zimmerman, R. M. and Bellotti, R., ‘Strength of concrete under multiaxial stress states’, in Proceedings of Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI Publication SP-55 (1978) pp. 103–131.

  8. Reinhardt, H. W., ‘Testing and monitoring techniques for impact and impulse loading of concrete structures’, in ‘Concrete Structures under Impact and Impulsive Loading’, edited by G. Plauk, Introductory Report (BAM, Berlin, 1982) pp. 65–87.

    Google Scholar 

  9. Bresler, B. and Bertero, V. V., ‘Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression’, in Proceedings of 2nd Canadian Conference on Earthquake Engineering, Hamilton, Ontario, 1975, pp. 1–13.

  10. Kotsovos, M. D., ‘Effect of testing technique on the postultimate behaviour of concrete in compression’,Mater. Struct. 16(91) (1983) 3–12.

    Google Scholar 

  11. Takeda, J., ‘A loading apparatus for high speed testing of building materials and structures’, in Proceedings of 2nd Japan Congress on Testing Materials, Kyoto (Japan Society for Testing Materials, 1959) pp. 236–238.

  12. Takeda, J. and Tachikawa, H., ‘The mechanical properties of several kinds of concrete at compressive, tensile, and flexural tests in high rates of loading (in Japanese),Trans. Architect. Inst. Jpn No. 77 (1962) 1–6.

    Google Scholar 

  13. Idem,, ‘The mechanical properties and their fundamental equations of concrete subjected to compression in high rates of loading’ (in Japanese),ibid., , No. 78 (1962) 1–6.

    Google Scholar 

  14. Gopalaratnam, V. S. and Shah, S. P., ‘Instrumented impact testing of brittle materials’, in ‘Engineering Mechanics in Civil Engineering’, edited by A. P. Boresi and K. P. Chong, Vol. 1 (ASCE, New York, 1984) pp. 635–639.

    Google Scholar 

  15. Watstein, D., ‘Effect of straining rate on the compressive strength and elastic properties of concrete’,ACI J. 49 (1953) 729–744.

    Google Scholar 

  16. Idem,, ‘Properties of concrete at high rates of loading’, in ‘Symposium on Impact Testing’, ASTM STP 176 (1955) pp. 156–169.

    Google Scholar 

  17. Popp, C., ‘Unterschungen über das Verhalten von Beton bei schlagartiger Beanspruchung’ (A study of the behaviour of concrete under impact loading), Deutscher Ausschuss fur Stahlbeton, No. 281 (1977).

  18. Malvern, L. E. and Ross, C. A., ‘Dynamic response of concrete and concrete structures’, Second Annual Technical Report, AFOSR Contract No. F49620-83-K007 (1985).

  19. Gupta, Y. M. and Seaman, L., ‘Local response of reinforced concrete to missile impact’, Final Report, EPRI NP-1217, Project 393-1 (Palo Alto, 1979).

  20. Eibl, J., ‘Soft and hard impact’, in ‘Concrete for Hazard Protection’ (Concrete Society, Edinburgh, 1987) pp. 175–186.

    Google Scholar 

  21. Bischoff, P. H. and Perry, S. H., ‘Compressive strain rate effects of concrete’, in ‘Cement-Based Composites: Strain Rate Effects on Fracture’, edited by S. Mindess and S. P. Shah, Vol. 64 (Materials Research Society, Pittsburg, 1986) pp. 151–165.

    Google Scholar 

  22. Goldsmith, W., ‘Impact: The Theory and Physical Behaviour of Colliding Solids’ (Arnold, London, 1960).

    MATH  Google Scholar 

  23. Hjorth, O., ‘Ein Beitrag zur Frage der Festigkeiten und des Verbundverhaltens von Stahl und Beton bei hohen Beanspruchungsgeschwindigkeiten’ (A Contribution to the Problem of Strength and Bond Relationships for Steel and Concrete at High Loading Rates), Dissertation, Universitat Carolo-Wilhelmina, Braunschweig, Heft 32 (1976).

    Google Scholar 

  24. Sigvaldason, O. T., ‘The influence of testing machine characteristics upon the cube and cylinder strength of concrete’,Mag. Concr. Res. 18(57) (1966) 197–206.

    Google Scholar 

  25. Chung, H. W., ‘Shear strength of concrete joints under dynamic loads,’Concrete 12(3) (1978) 27–29.

    Google Scholar 

  26. Bentur, A., Mindess, S. and Banthia, N., ‘The behaviour of concrete under impact loading: Experimental procedures and method of analysis’,Matér. Constr. 19(113) (1986) 371–378.

    Google Scholar 

  27. Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B. and Curran, D. R., ‘Impact Dynamics’ (Wiley, New York, 1982).

    Google Scholar 

  28. Hughes, B. P. and Gregory, R., ‘Concrete subjected to high rates of loading in compression’,Mag. Concr. Res. 24(78) (1972) 25–36.

    Google Scholar 

  29. Hughes, B. P. and Watson, A. J., ‘Compressive strength and ultimate strain of concrete under impact loading’,ibid.,30(105) (1978) 189–199.

    Google Scholar 

  30. Davies, R. M., ‘A critical study of the Hopkinson pressure bar’,Phil. Trans. R. Soc. A240 (1948) 375–457.

    Google Scholar 

  31. Davies, E. D. H. and Hunter, S. C., ‘The dynamic compression testing of solids by the method of the split Hopkinson pressure bar’,J. Mech. Phys. Solids 11 (1963) 155–179.

    Article  Google Scholar 

  32. Lindholm, U. S., ‘High strain rate testing’, in ‘Techniques of Metals Research: Measurement of Mechanical Properties,’ edited by R. F. Bunshah, Vol. 5, Part 1 (Interscience, New York, 1971) pp. 199–271.

    Google Scholar 

  33. Bertholf, L. D. and Karnes, C. H., ‘Two-dimensional analysis of the split Hopkinson pressure bar system,’J. Mech. Phys. Solids 23(1) (1975) 1–19.

    Article  Google Scholar 

  34. Hakalehto, K. O., ‘The behaviour of rock under impulse loads. A study using the Hopkinson split bar method’, Acta Polytechnica Scandinavica, Chemistry including Metallurgy Series, No. 81 (Helsinki, 1969).

  35. Aronsson, R., Fagerlund, G. and Larsson, B., ‘Betongs slagseghet i palar’ (Impact strength of concrete piles), Cement-och Betong Institutet (CBI), forskning FO 1:77 (Stockholm, 1977).

  36. Fagerlund, G. and Larsson, B., ‘Betongs slaghallfasthet’ (Impact strength of concrete), Cement-och Betong Institutet (CBI), forskning FO 4:79 (Stockholm, 1979).

  37. Malvern, L. E., Jenkins, D. A., Tang, T. and Ross, C. A., ‘Dynamic compressive testing of concrete’, in Proceedings of 2nd Symposium on the Interaction of Non-Nuclear Munitions with Structures, Florida (US Dept. Defense, 1985) pp. 194–199.

  38. Malvern, L. E., Tang, T., Jenkins, D. A. and Gong, J. C., ‘Dynamic compressive strength of cementitious materials’, in ‘Cement-Based Composites: Strain Rate Effects on Fracture’, edited by S. Mindess and S. P. Shah, Vol. 64 (Materials Research Society, Pittsburg, 1986) pp. 119–138.

    Google Scholar 

  39. Follansbee, P. S. and Frantz, C., ‘Wave propagation in the split Hopkinson pressure bar’,ASME J. Engng Mater. and Technol. 105 (1983) 61–66.

    Article  Google Scholar 

  40. Malvern, L. E., Jenkins, D. A., Tang, T. and Gong, J.-C., ‘Dynamic testing of concrete with the split Hopkinson pressure bar’, in Proceedings of 4th Symposium on the Interaction of Non-Nuclear Munitions with Structures, Florida (US Dept. Defense, 1989) pp. 296–301.

  41. Kotsovos, M. D. and Newman, J. B., ‘Plain concrete under load. A new interpretation,’ in ‘Advanced Mechanics of Reinforced Concrete’, IABSE Final Report No. 34 (Delft, 1981) pp. 143–158.

  42. Atchley, B. L. and Furr, H. L., ‘Strength and energy absorption capabilities of plain concrete under dynamic and static loadings,’ACI J. 64 (1967) 745–756.

    Google Scholar 

  43. Frank, T., ‘Beeinflussung der Prufergebnisse durch die Messeinrichtung bei der Stossbeanspruchung von Beton’ (The influence on test results by the measuring device used for impact tests of concrete),Materialprufung 26(4) (1984) 96–100.

    Google Scholar 

  44. Hecker, R., ‘Messtechnische Probleme bei der Erfassung der Dehnwellenform in längsgestossen Staben schlagend arbeitender Maschinen’ (Problems of measurement to record the shape of the clastic wave in an axial body in percussive machines),Technisches Messen 51(1) (1984) 29–32,

    Google Scholar 

  45. Abrams, D. A., ‘Effect of rate of application of load on the compressive strength of concerete,’ASTM J. 17 (Part II) (1917) 364–377,

    Google Scholar 

  46. Jones, P. G. and Richart, F. E., ‘The effect of testing speed on strength and elastic properties of concrete,’ASTM J. 36 (Part II) (1936) 380–392.

    Google Scholar 

  47. Evans, R. H., ‘Effect of rate of loading on the mechanical properties of some materials,’J. Inst. Civil Engrs 18 (1942) 296–306.

    Google Scholar 

  48. Katsuta, T., ‘On the elastic and plastic properties of concrete in compression tests with high deformation-velocity, Part 1’ (in Japanese),Trans. Inst. Jap. Arch. No. 29 (May 1943) 268–274.

    Google Scholar 

  49. Idem ‘On the elastic and plastic properties of concrete in compression tests with high deformation-velocity, Part 2’ (in Japanese),ibid. No. 33 (Part I) (1944) 53–54.

    Google Scholar 

  50. Thaulow, S., ‘Rate of loading for compressive strength tests,’Belong 38(1) (1953) 11–15.

    Google Scholar 

  51. Takeda, J. and Tachikawa, H., ‘Deformation and fracture of concrete subjected to dynamic load,’ in: ‘Mechanical Behaviour of Materials,’ Vol. 4 (Society of Materials Science, Kyoto, 1972) pp 267–277.

    Google Scholar 

  52. Ban, S. and Muguruma, H., ‘Behaviour of plain concrete under dynamic loading with straining rate comparable to earthquake loading,’ in Proceedings of 2nd World Conference on Earthquake Engineering, Vol. 3 (Science Council of Japan, Tokyo, 1960) pp. 1979–1993.

    Google Scholar 

  53. Hatano, T. and Tsutsumi, H., ‘Dynamic compressive deformation and failure of concrete under earthquake load,’ibid. in pp. 1963–1978.

    Google Scholar 

  54. Lundeen, R. L., ‘Dyhamic and static tests of plain concrete specimens: Report I,’ Miscellaneous Paper No. 6-609, US Army Engineers Waterways Experiment Station (Corps of Engineers, Vicksburg, Mississippi, 1963).

    Google Scholar 

  55. Horibe, T. and Kobayashi, R., ‘On mechanical behavior of rock under various loading-rates’ (Summary, figures and tables in English),J. Soc. Mater. Sci. (Jpn) 14(141) (1965) 498–506 (62–70).

    Google Scholar 

  56. Cowell, W. L., ‘Dynamic properties of plain Portland cement concrete,’ Technical Report No. R447, DASA 130181 (US Naval Civil Engineering Laboratory, Port Hueneme, California, 1966).

    Google Scholar 

  57. Mahin, S. A. and Bertero, V. V., ‘Rate of loading effects on uncracked and repaired reinforced concrete members,’ Report No. UCB/EERC 72-9 (Earthquake Engineering Research Center, University of California, Berkeley, 1972).

    Google Scholar 

  58. Wesche, K. and Krause, K., ‘Der Einfluss der Belastungsgeschwindigkeit auf Druckfestigkeit und Elastizitatsmodul von Beton’ (The effect of loading rate on compressive strength and modulus of elasticity of concrete),Materialprufung 14(7) (1972) 212–218.

    Google Scholar 

  59. Sparks, P. R. and Menzies, J. B., ‘The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression,’Mag. Concr. Res. 25(83) (1973) 73–80.

    Google Scholar 

  60. Bhargava, J. and Rhenstrom, A., ‘Dynamic strength of polymer modified and fiber-reinforced concretes,’Cement Concr. Res. 7 (1977) 199–208.

    Article  Google Scholar 

  61. Paulmann, K. and Steinert, J., ‘Beton bei sehr kurzer Belastungsgeschichte’ (Concrete under very short-term loading),Beton 32(6) (1982) 225–228.

    Google Scholar 

  62. Ferritto, J., ‘Dynamic tests of model concrete’, in ‘Dynamic Modeling of Concrete Structures,’ SP-73, edited by H. G. Harris (American Concrete Institute, 1982) pp. 23–33.

  63. Krawinkler, H. and Moncarz P. D., ‘Similitude requirements for dynamic models,’ibid. in ‘Dynamic Modeling of Concrete Structures,’ SP-73, edited by H. G. Harris (American Concrete Institute, 1982) pp. 1–22.

  64. Millstein, L. and Sabnis, G. M., ‘Concrete strength under impact loading,’ in ‘Concrete Structures under Impact and Impulsive Loading’, edited by G. Plauk (BAM, Berlin, 1982) pp. 101–111.

    Google Scholar 

  65. Dilger, W. H., Koch, R. and Kowalczyk, R., ‘Ductility of plain and confined concrete under different strain rates,’ACI J. 81(1) (1984) 73–81.

    Google Scholar 

  66. Rostasy, F. S., Scheuermann, J. and Sprenger, K. H., ‘Mechanical behaviour of some construction materials subjected to rapid loading and low temperature,’Betonwerk+Fertigteil-Technik 50(6) (1984) 393–401.

    Google Scholar 

  67. Rostasy, F. S. and Hartwich, K., ‘Compressive strength and deformation of steel fibre reinforced concrete under high rate of strain,’Int. J. Cement Compos. Lightwt Concr. 7(1) (1985) 21–28.

    Article  Google Scholar 

  68. Ahmad, S. H. and Shah, S. P., ‘Behavior of hoop confined concrete under high strain rates,’ACI J. 82(5) (1985) 634–647.

    Google Scholar 

  69. Oh, B. H. and Shin, S. B., ‘Dynamic behaviour of concrete in compression,’ in ‘Structural Mechanics in Reactor Technology,’ Vol. H (Concrete and Concrete Structures), edited by F. H. Wittman (Balkema, Rotterdam, 1987) pp. 293–298.

    Google Scholar 

  70. Jawed, I., Childs, G., Ritter, A., Winzer, S., Johnson, T. and Barker, D., ‘High-strain rate behaviour of hydrated cement pastes,’Cement Concr. Res. 17(3) (1987) 433–440.

    Article  Google Scholar 

  71. Yamaguchi, H., Fujimoto, K. and Nomura, S., ‘Strain rate effect on stress-strain relationships of concrete,’ in Proceedings of 4th Symposium on the Interaction of Non-Nuclear Munitions with Structures, Florida, 1989, pp. 290–295.

  72. Gran, J. K., Florence, A. L. and Colton, J. D., ‘Dynamic triaxial tests of high-strength concrete,’ASCE J. Engng Mech. 115(5) (1989) 891–904.

    Google Scholar 

  73. Ross, C. A., Kuennen, S. T. and Strickland, W. S., ‘High strain rate effects on tensile strength of concrete’, in Proceedings of 4th Symposium on the Interaction of Non-Nuclear Munitions with Structures. Florida, 1989, pp. 302–308.

  74. Ross, A. C., Thompson, P. Y. and Tedesco, J. W., ‘Split-Hopkinson pressure bar tests on concrete and mortar in tension and compression,’ACI Mater. J. 86(5) (1989) 475–481.

    Google Scholar 

  75. Kvirikadze, O. P., ‘Determination of the ultimate strength and modulus of deformation of concrete at different rates of loading,’ in ‘Testing in Situ of Concrete Structures’ (RILEM, Budapest, 1977) pp. 109–117.

    Google Scholar 

  76. Passow, H., ‘Druckfestigkeit, Zugfestigkeit, und Zerschmetterungsfestigkeit’ (Compressive strength, tensile strength, and impact strength) (Zementverlag, Charlottenburg, 1918).

    Google Scholar 

  77. Framm, F., ‘Zerschmetterungsfestigkeit und Druckfestigkeit’ (Impact strength and compressive strength),Zement 9(48–51) (1920) 601–603, 613–615, 625–628, 639–641.

    Google Scholar 

  78. Wenzel, F., ‘Beitrag zur Stossfestigkeit von Beton’ (Contribution to Impact Strength of Concrete). Dissertation, T.H. Aachen (1934).

  79. Guttmann, A. and Seidel, K., ‘Über die Druckfestigkeit, Stossfestigkeit und Abnutzbarkeit von Beton’ (About the compressive strength, impact strength and abrasion resistance of concrete),Zement 25(14) (1936) 233–240.

    Google Scholar 

  80. Glanville, W. H., Grime, G., Fox, E. N. and Davies, W. W., ‘An investigation of the stresses in reinforced concrete piles during driving,’ Building Research Technical Paper No. 20, Department of Scientific and Industrial Research (HMSO, London, 1938).

    Google Scholar 

  81. Dahms, J., ‘Über die Schlagfestigkeit des Betons für Rammpfahle’ (Impact strength of concrete piles),Beton 18(4) (1968) 131–136 and18(5) (1968) 177–182.

    Google Scholar 

  82. Bonzel, J. and Dahms, J., ‘Schlagfestigkeit von faserbewehrtem Beton’ (Impact resistance of fibre-reinforced concrete),Beton 31(3) (1981) 97–101 and31(4) (1981) 136–142.

    Google Scholar 

  83. Jamrozy, Z. and Swamy, R. N., ‘Use of steel fibre reinforcement for impact resistance and machinery foundation,’Int J. Cement Compos. 1(2) (1979) 65–75.

    Google Scholar 

  84. Green, H., ‘The impact testing of concrete,’ in ‘Mechanical Properties of Non-Metallic Brittle Materials,’ edited by W. H. Walton (Butterworths, London, 1958) pp. 300–313.

    Google Scholar 

  85. Idem ‘Impact strength of concrete, ’Proc. Inst. Civil Engrs28 (1964) 383–396.

    Google Scholar 

  86. Hughes, B. P. and Gregory, R., ‘The impact strength of concrete using Green's ballistic pendulum,ibid. 41 (1968) 731–750.

    Google Scholar 

  87. Birkimer, D. L. and Lindemann, R., ‘Dynamic tensile strength of concrete materials,’J. Amer. Concr. Inst. 68 (1971) 47–49.

    Google Scholar 

  88. Kormeling H. A., Zielinski, A. J. and Reinhardt, H. W., ‘Experiments on concrete under single and repeated uniaxial impact tensile loading,’ Stevin Report 5-80-3 (Delft University of Technology, 1980).

  89. Suaris, W. and Shah, S. P., ‘Inertial effects in the instrumented impact testing of cementitious composites,’Cement Concr. Aggreg. 3(2) (1981) 77–83.

    Article  Google Scholar 

  90. Zielinski, A. J. and Reinhardt, H. W., ‘Impact stress-strain behaviour of concrete in tension,’ in ‘Concrete Structures under Impact and Impulsive Loading’ edited by G. Plauk (BAM, Berlin, 1982) pp. 112–124.

    Google Scholar 

  91. Curione, C., ‘Der Einfluss dynamischer Belastung auf Baukonstruktionen (Influence of dynamic loading on structural design),Ziviler Luftschutz 22(2/3) (1958 58–66.

    Google Scholar 

  92. ASCE, ‘Design of Structures to Resist Nuclear Weapons Effects,’ Manual No. 42 (ASCE, New York, 1985 Revised Edition).

  93. Mihashi, H. and Wittmann, F. H., ‘Stochastic approach to study the influence of rate of loading on strength of concrete’,Heron 25(3) (1980).

  94. Sabnis, G. M., Harris, H. G., White, R. N. and Mirza, M. S., ‘Structural Modelling and Experimental Techniques’ (Prentice-Hall, Englewood Cliffs, 1983).

    Google Scholar 

  95. CEB, ‘Concrete Structures under Impact and Impulsive Loading,’ Synthesis Report, Bulletin d'Information No. 187 (Comité Euro-International du Béton, Lausanne, 1988).

    Google Scholar 

  96. Zielinski, A. J., ‘Concrete structures under impact loading: rate effects,’ Stevin Report 5-84-14 (Delft University of Technology, 1984).

  97. Dhir, R. K. and Sangha, C. M., ‘A study of the relationships between time, strength, deformation and fracture of plain concrete,’Mag. Concr. Res. 24(81) (1972) 197–208.

    Google Scholar 

  98. Kaplan, S. A., ‘Factors affecting the relationship between rate of loading and measured compressive strength of concrete,’ibid. 32(111) (1980) 79–88.

    Article  Google Scholar 

  99. Spooner, D. C., ‘Stress-strain-time relationships for concrete,’ibid. 23(75–76) (1971) 127–131.

    Google Scholar 

  100. Soroushian, P., Choi, K-B. and Alhamad, A., ‘Dynamic constitutive behavior of concrete,’ACI J. 83(2) (1986) 251–259.

    Google Scholar 

  101. Neville, A. M., ‘Properties of Concrete’ (Pitman, London, 1981).

    Google Scholar 

  102. Green, S. J. and Perkins, R. D., ‘Uniaxial compression tests at varying strain rates on three geological materials,’ in ‘Basic and Applied Rock Mechanics,’ edited by K. E. Gray (Society of Mining Engineers of AIME, New York, 1972) pp. 35–45.

    Google Scholar 

  103. Konig, G. and Dargel, H. J., ‘A constitutive law for reinforced concrete with consideration to the effect of high strain rates,’ in ‘Concrete Structures under Impact and Impulsive Loading,’ edited by G. Plauk (BAM, Berlin, 1982) pp. 67–82.

    Google Scholar 

  104. Kipp, M. E., Grady, D. E. and Chen, E. P., ‘Strain rate dependent fracture initiation,’Int. J. Fract. 16 (1980) 471–478.

    Article  Google Scholar 

  105. Takeda, J., Tachikawa, H. and Fujimoto, K., ‘Mechanical behaviour of concrete under higher rate loading than in static test,’ in ‘Mechanical Behaviour of Materials,’ Vol. 2 (Society of Materials Science, Kyoto, 1974) pp. 479–486.

    Google Scholar 

  106. Gregson, V. R., ‘A shock wave study of Fondue-Frye WA-1 and a concrete,’ Report MSL-70-30 (General Motors Materials and Structures Laboratory, Warren, Michigan, 1971).

    Google Scholar 

  107. Read, H. E. and Maiden, C. J., ‘The dynamic behavior of concrete,’ 3SR-707 (Systems Science and Software, La Jolla, California, 1971).

    Google Scholar 

  108. Brace, W. F. and Jones, A. H., ‘Comparison of uniaxial deformation in shock and static loading of three rocks,’J. Geophys. Res. 76(20) (1971) 4913–4921.

    Google Scholar 

  109. Janach, W., ‘The role of bulking in brittle failure of rocks under rapid compression,’Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 13(6) (1976) 177–186.

    Article  Google Scholar 

  110. Nemat-Nasser, S., ‘Mechanics of brittle failure in compression,’Computers & Structures 20(1–3) (1985) 235–237.

    Article  Google Scholar 

  111. Young, C. and Powell, C. N., ‘Lateral intertia effects on rock failure in split-Hopkinson-bar experiments,’ in Proceedings of 20th US Symposium on Rock Mechanics, Austin, Texas, June 1979, pp. 299–307.

  112. Kotsovos, M. D., ‘Consideration of triaxial stress conditions in design: a necessity,’ACI J. 84(3) (1987) 266–273.

    Google Scholar 

  113. Reinhardt, H. W., ‘Simple relations for the strain rate influence on concrete,’ in ‘Darmstadt Concrete,’ edited by G. Konig, H. W. Reinhardt and J. C. Walraven, Vol. 2 (Institut für Massivbau, T.H. Darmstadt, 1987) pp. 203–211.

    Google Scholar 

  114. Kormeling, H., ‘A model for concrete under impact tensile loading,’ in: ‘Concrete Structures under Impact and Impulsive Loading,’ edited by G. Plauk (BAM, Berlin, 1982) pp. 125–133.

    Google Scholar 

  115. Evans, R. H., ‘Effect of rate of loading on some mechanical properties of concrete,’ in ‘Mechanical Properties of Non-Metallic Brittle Materials’ (Butterworths, London, 1958) pp. 175–190.

    Google Scholar 

  116. Rüsch, H., ‘Researches towards a general flexural theory for structural concrete,’ACI J. 57(1) (1960) 1–28.

    Google Scholar 

  117. Reinhardt H. W., Personal Communication (1985).

  118. Carrasquillo, R. L., Nilson, A. H. and Slate, F. O., ‘Properties of high strength concrete subject to shortterm loads,’ACI J. 78(3) (1981) 171–178.

    Google Scholar 

  119. Mander, J. B., Priestly, M. J. N. and Park, R., ‘Theoretical stress-strain model for confined concrete,’ASCE J. Struct. Engng 114(8) (1988) 1804–1826.

    Article  Google Scholar 

  120. Ross, C. A. and Thompson, P. Y., ‘High strain rate tensile tests of concrete and mortar,’ in Proceedings, ‘Fracture and Damage of Concrete and Rock,’ Vienna, July 1988, Paper IX-2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, P.H., Perry, S.H. Compressive behaviour of concrete at high strain rates. Materials and Structures 24, 425–450 (1991). https://doi.org/10.1007/BF02472016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472016

Keywords

Navigation