Skip to main content
Log in

Zur olfaktorischen Navigation der Vögel

Olfactory navigation by birds

  • Published:
Journal für Ornithologie Aims and scope Submit manuscript

Summary

In contrast to earlier navigation hypotheses, based as they are on theoretical constructs deduced from our knowledge of the physical world, the notion of olfactory navigation is an unexpected outcome of empirical research. Referring to sceptical articles on the issue in this journal and elsewhere (e.g. Schmidt-Koenig 1985, 1987, 2001, Wiltschko 1996), and in order to fill a gap in a recent review on avian navigation (Wiltschko & Wiltschko 1999), I describe the most instructive experiments providing evidence that birds are able to home by utilizing atmospheric trace gases perceived by the sense of smell. (1) When released in an unfamiliar distant area, homing pigeons with bisected olfactory nerves fly considerable distances, but fail to approach the home site (Fig. 1, 2, 3). Largely analogous treatments in control birds and experimentals make it extremely unlikely that the failures are due to non-olfactory side-effects. (2) Elimination of trace gases from the inhaled air by means of charcoal filters prior to release, combined with nasal anaesthesia upon release, prevents initial homeward orientation, whereas nasal anaesthesia alone (after smelling of natural release-site air) does not (Fig. 5). (3) Pigeons exposed to natural air at one site and released, without access to natural air, at a quite different site, fly in a direction corresponding to homeward from the site of exposure, but not from the current actual position (Fig. 6). (4) Long-term screening from winds in an aviary at home prevents subsequent homeward orientation from distant sites. Deflecting or reversing winds in a home aviary results in accordingly deflected or reversed orientation (Fig. 7). (5) From areas made familiar by previous flights homing is possible also on a non-olfactory basis. This can be explained in terms of the utilisation of visual landscape features.

In as far as related experiments were conducted using reliable methods, the results are unequivocal. On the whole, they can be understood only provided that the birds are able to deduce their position relative to the home site from atmospheric trace gases, and that this ability requires previous opportunity to correlate current wind conditions with simultaneous olfactory conditions at the home site over a lengthy period of time. As an attempt to explain the underlying system, a working hypothesis is presented which postulates that (a) long-range gradients exist in the ratios among several airborne trace substances and that (b) their directions can be derived, at the home site, from changes of ratios in dependence on wind direction. Atmospheric hydrocarbons investigated by means of gas chromatography in an area covering 400 km in diameter did in fact include such postulated ratio gradients (Fig. 8). Their directions were fairly stable even under varying conditions of weather and winds. Correlations among gradient directions and changes of ratios according to wind directions were also found, but the long-term angular relationships have not yet been definitely determined. By means of computer simulations using actually measured atmospheric values as inputs, navigational performances could be created corresponding to those observed in homing pigeons (Fig. 9).

Experiments with swifts and starlings indicate that olfactory navigation methods are applied also by wild-living species (Fig. 10 and Fig. 11). A schematic model (Fig. 12) illustrates how they might be integrated in the process of long-distance migratory orientation. Also, the question is raised whether long-distance foraging flights of albatrosses (Fig. 13) and other oceanic birds might be controlled by olfactory signals involving long-range ratio gradients of atmospheric trace gases (Fig. 14). A few experiments are suggested for testing the potential application of olfactory navigation in natural bird life.

Zusammenfassung

Die Schlussfolgerung, dass Vögel auf geruchlicher Basis mit Hilfe atmosphärischer Spurenstoffe aus unbekannten Gebieten zu ihrem Heimatort zurück finden, ergibt sich nicht, wie frühere Hypothesen über. das Heimfindevermögen, aus einem theoretischen Ansatz, sondern aus einer Reihe von Experimentalbefunden. (1) In entfernte fremde Regionen verfrachtete Brieftauben fliegen nur dann heimwärts, wenn sie riechen können; Tauben mit durchtrennten Geruchsnerven fliegen zwar oft weite Strecken, nähern sich aber nicht der Heimat. Weitgehend analoge Behandlungen der Versuchs- und Kontrollvögel machen es sehr unwahrscheinlich, dass das Versagen der Ersteren auf geruchsunabhängigen Nebenwirkungen beruht. (2) Die Entfernung von Spurengasen aus der Atemluft durch Aktivkohlefilter vor der Auflassung, kombiniert mit nasaler Lokalnarkose während des Abflugs, verhindert heimgerichtete Abflüge, während die Lokalnarkose allein (nach dem Riechen ungefilterter Luft am Auflassort) das nicht tut. (3) Tauben, die an einem Ort der natürlichen Umgebungsluft exponiert, aber dann ohne Zugang zur natürlichen Luft an einem entgegengesetzt gelegenen Ort aufgelassen werden, fliegen so ab, als wären sie am olfaktorischen Expositionsort und nicht am tatsächlichen Auflassungsort. (4) Langfristiges Abschirmen des Windes in der Heimatvoliere bewirkt völliges Versagen der Heimorientierung, Umlenken oder Umkehren des Windes bewirkt voraussagbare Ablenkung oder Umkehrung der Abflugrichtungen am Auflassort. (5) Aus durch frühere Flüge bekannten Gebieten ist auch nicht-olfaktorisches Heimfinden möglich. Es ist durch Nutzung visueller Landschaftskenntnis erklärbar.

Soweit entsprechende Versuche methodisch einwandfrei durchgeführt wurden, sind die Resultate widerspruchsfrei. In ihrer Gesamtheit sind sie nur dann verständlich, wenn man folgert, dass die Vögel Spurengase der Atmosphäre verwerten, aus denen sie ihre Position relativ zum Heimatort ableiten können, vorausgesetzt, dass sie dort über längere Zeit die jeweilige Wind-Situation mit der gleichzeitigen Geruchs-Situation korrelieren konnten. Zur Erklärung des zugrunde liegenden Systems dient eine Arbeitshypothese, die postuliert, dass es (a) weiträumige Gradienten in den Proportionsverhältnissen zwischen verschiedenen Spurensubstanzen gibt und dass (b) deren Richtungen sich am Heimatort aus der Änderung der Proportionen in Abhängigkeit von der Windrichtung ermitteln lassen. Gaschromatische Untersuchungen atmosphärischer Kohlenwasserstoffe in einem Areal von 400 km Durchmesser haben gezeigt, dass das erste Postulat grundsätzlich erfüllt ist und dass die Richtungen räumlicher Proportionsgradienten unter verschiedenen Wetter und Windverhältnissen relativ stabil erhalten bleiben. Korrelationen im Sinne des zweiten Postulats sind ebenfalls erwiesen, doch sind die langfristigen Richtungsbeziehungen noch nicht hinreichend geklärt. In Computersimulationen mit gemessenen Atmosphärenwerten als Eingangsgrößen konnten Navigationsleistungen erzeugt werden, die denen von Brieftauben entsprechen.

Versuche mit Mauerseglern und Staren weisen darauf hin, dass die olfaktorische Navigation eine auch unter Wildvögeln verbreitete Fähigkeit ist. Die Vermutung liegt nahe, dass sie beim Vogelzug zum Auffinden des engeren Brut- bzw. Überwinterungsareals dient. Es sollte geprüft werden, ob sie auch bei den weiträumigen Exkursionen von Albatrossen und anderen Hochseevögeln eine Rolle spielt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Able, K. P. (1996): The debate over olfactory navigation by homing pigeons. J. Exp. Biol. 199: 121–124.

    Article  Google Scholar 

  • Åkesson, S. & Alerstam, T. (1998): Oceanic navigation: are there any feasible geomagnetic bi-coordinate combinations for albatrosses? J. Avian Biol. 29: 618–625.

    Article  Google Scholar 

  • Bäckman, J. & Alerstam, T. (2001): Confronting the winds: orientation and flight behaviour of roosting swifts,Apus apus. Proc. Roy. Soc. Lond. B 268: 1081–1087.

    Article  Google Scholar 

  • Baldaccini, N. E., Benvenuti, S., Fiaschi, V. & Papi, F. (1975): Pigeon navigation: effects of wind deflection at home cage on homing behaviour. J. Comp. Physiol. 99: 177–186.

    Article  Google Scholar 

  • Bang, B. G. (1971): Functional anatomy of the olfactory system in 23 orders of birds. Acta Anatomica 79, Suppl. 58: 1–76.

    CAS  PubMed  Google Scholar 

  • Becker, J. & van Raden, H. (1986): Meteorologische Gesichtspunkte zur olfaktorischen Navigations-hypothese. J. Ornithol. 127: 1–8.

    Article  Google Scholar 

  • Benvenuti, S. & Gagliardo, A. (1996): Homing behaviour of pigeons subjected to unilateral zinc sulphate treatment of their olfactory mucosa. J. Exp. Biol. 199: 2531–2535.

    Article  CAS  PubMed  Google Scholar 

  • Benvenuti, S. & Wallraff, H.G. (1985): Pigeon navigation: site simulation by means of atmospheric odours. J. Comp. Physiol. A 156: 737–746.

    Article  Google Scholar 

  • Benvenuti, S., Ioalè, P., Gagliardo, A. & Bonadonna, F. (1992): Effects of zinc sulphate-induced anosmia on homing behaviour of pigeons. Comp. Biochem. Physiol. 103A: 519–526.

    Article  CAS  Google Scholar 

  • Benvenuti, S., Ioalè, P. & Massa, B. (1993): Olfactory experiments on Cory’s shearwater (Calonectris diomedea): the effect of intranasal zinc sulphate treatment on short-range homing behaviour. Boll. Zool. 60: 207–210.

    Article  Google Scholar 

  • Berthold, P. (1991): Spatiotemporal programmes and genetics in orientation. In: Berthold, P. (Ed.): Orientation in Birds: 86–105. Basel.

  • Berthold, P. (2000): Vogelzug (4. Aufl.). Darmstadt.

  • Bingman, V. P. & Benvenuti, S. (1996): Olfaction and the homing ability of pigeons in the southeastern United States. J. Exp. Zool. 275: 186–192.

    Article  Google Scholar 

  • Bingman, V. P., Alyan, S. & Benvenut, S. (1998): The importance of atmospheric odours for the homing performance of pigeons in the Sonoran desert of the southwestern United States. J. Exp. Biol. 201: 755–760.

    Article  PubMed  Google Scholar 

  • Bonadonna, F., Spaggiari, J. & Weimerskirch, H. (2001): Could osmotaxis explain the ability of blue petrels to return to their burrows at night? J. Exp. Biol. 204: 1485–1489.

    Article  CAS  PubMed  Google Scholar 

  • Bruderer, B. (1997): The study of bird migration by radar. Part2: major achievements. Naturwiss. 84: 45–54.

    Article  CAS  Google Scholar 

  • Bruderer, B. & Weitnauer, E. (1972): Radarbeobachtungen über Zug und Nachtflüge des Mauerseglers (Apus apus). Rev. Suisse Zool. 79: 1190–1200.

    CAS  PubMed  Google Scholar 

  • Fiaschi, V., Farina, A. & Ioalé, P. (1974): Homing experiments on swiftsApus apus (L.) deprived of olfactory perception. Monit. Zool. Ital. (N.S.) 8: 235–244.

    Google Scholar 

  • Fischer, R. G., Kastler, J. & Ballschmiter, K. (2000): Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean. J. Geophys. Res. 105: 14,473–14,494.

    Article  CAS  Google Scholar 

  • Foà, A., Bagnoli, P. & Giongo, F. (1986): Homing pigeons subjected to section of the anterior commissure can build up two olfactory maps in the deflector loft. J. Comp. Physiol. A 159: 465–472.

    Article  PubMed  Google Scholar 

  • Gagliardo, A., Azis el Agbani, M. & Bingman, V.P. (2000): Olfaction and the navigational performance of homing pigeons on the Atlantic coast of Morocco. Ital. J. Zool. 67: 359–364.

    Article  Google Scholar 

  • Gagliardo, A., Odetti, F. & Ioalè, P. (2001): Relevance of visual cues for orientation at familiar sites by homing pigeons: an experiment in a circular arena. Proc. Roy. Soc. Lond. B 268: 2065–2070.

    Article  CAS  Google Scholar 

  • Ganzhorn, J. U. & Paffrath, D. (1995): Patterns in air pollution as model for the physical basis for olfactory navigation in pigeon homing. J. Ornithol. 136: 159–165.

    Article  Google Scholar 

  • Grubb, T. C. (1974): Olfactory navigation to the nesting burrow in Leach’s petrel (Oceanodroma leucorrhoa). Anim. Behav. 22: 192–202.

    Article  PubMed  Google Scholar 

  • Guilford, T., Gagliardo, A., Chappell, J., Bonadonna, F., Burt de Perera, T. & Holland, R. (1998): Homing pigeons use olfactory cues for navigation in England. J. Exp. Biol. 201: 895–900.

    Article  PubMed  Google Scholar 

  • Gwinner, E. (1968): Circannuale Periodik als Grundlage des jahreszeitlichen Funktionswandels bei Zugvögeln. Untersuchungen am Fitis (Phylloscopus trochilus) und am Waldlaubsänger (P. sibilatrix). J. Omithol. 109: 70–95.

    Google Scholar 

  • Ioalè, P., Papi, F., Fiaschi, V. & Baldaccini, N.E. (1978): Pigeon navigation: effects upon homing behaviour by reversing wind direction at the loft. J. Comp. Physiol. 128: 285–295.

    Article  Google Scholar 

  • Ioalè, P., Nozzolini, M. & Papi, F. (1990): Homing pigeons do extract directional information from olfactory stimuli. Behav. Ecol. Sociobiol. 26: 301–305.

    Article  Google Scholar 

  • Jacob, S., Kinnunen, L. H., Metz, J., Cooper,M. & McClintock, M. K. (2001): Sustained human chemosignal unconsciously alters brain function. NeuroReport 12: 2391–2394.

    Article  CAS  PubMed  Google Scholar 

  • Jouventin, P. & Weimerskirch, H. (1990): Satellite tracking of wandering albatrosses. Nature 343: 746–748.

    Article  Google Scholar 

  • Kenyon, K. W. & Rice, D. W. (1958): Homing in Laysan albatrosses. Condor 60: 3–6.

    Article  Google Scholar 

  • Kiepenheuer, J. (1985): Can pigeons be fooled about the actual release site position by presenting them information from another site? Behav. Ecol. Sociobiol. 18: 75–82.

    Google Scholar 

  • Kramer, G. (1953): Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J. Ornithol. 94: 201–219.

    Article  Google Scholar 

  • Kramer, G. (1959a): Über die Heimfindeleistung unter Sichtbegrenzung aufgewachsener Brieftauben. Verh. Deutsch. Zool. Ges. 1958. 168–176.

    Google Scholar 

  • Kramer, G. (1959b): Recent experiments on bird orientation. Ibis 101: 399–416.

    Article  Google Scholar 

  • Matthews, G. V. T. (1968): Bird Navigation (2nd edition). Cambridge.

  • Mouritsen, H. & Mouritsen, O. (2000): A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J. Theor. Biol. 207: 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Nevitt, G. A. (1999): Foraging by seabirds on an olfactory landscape. American Scientist 87: 46–53.

    Article  Google Scholar 

  • Nevitt, G. A. (2000): Olfactory foraging by Antarctic procellariiform seabirds. life at high Reynolds numbers. Biol. Bull. 198: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Offringa, H. (1996): Slecht-weer-migratie van GierzwaluwApus Apus op zee 1980-94. Limosa 69: 1–8.

    Google Scholar 

  • Papi, F. (1975): La navigazione dei colombi viaggiatori. Le Scienze 78: 66–75.

    Google Scholar 

  • Papi, F. (1986): Pigeon navigation: solved problems and open questions. Monit. Zool. Ital. (N.S.) 20: 471–517.

    Google Scholar 

  • Papi, F. (1991): Olfactory navigation. In: Berthold P. (Ed.): Orientation in Birds: 52–85. Basel.

  • Papi, F. & Luschi, P. (1996): Pinpointing ‘Isla Meta’: the case of sea turtles and albatrosses. J. Exp. Biol. 199: 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Papi, F. & Wallraff, H. G. (1992): Birds. In: Papi, F. (Ed.): Animal Homing: 263–319. London.

  • Papi, F., Fiore, L., Fiaschi, V. & Benvenuti, S. (1971): The influence of olfactory nerve section on the homing capacity of carrier pigeons. Monit. Zool. Ital. (N.S.) 5: 265–267.

    Google Scholar 

  • Papi, F., Fiore, L., Fiaschi, V. & Benvenuti, S. (1972): Olfaction and homing in pigeons. Monit. Zool. Ital. (N.S.) 6: 85–95.

    Google Scholar 

  • Papi, F., Mariotti, G., Foà, A. & Fiaschi, V. (1980): Orientation of anosmatic pigeons. J. Comp. Physiol. 135: 227–232.

    Article  Google Scholar 

  • Papi, F., Ioalé, P., Fiaschi, V., Benvenuti, S. & Baldaccini, N.E. (1984): Pigeon homing: the effect of outward-journey detours on orientation. Monit. Zool. Ital. (N.S.) 18: 53–87.

    Google Scholar 

  • Perdeck, A.C. (1958): Two types of orientation in migrating starlings,Sturnus vulgaris L., and chaffinches,Fringilla coelebs L., as revealed by displacement experiments. Ardea 46: 1–37.

    Google Scholar 

  • Prince, P. A., Wood, A. G., Barton, T. & Croxall, J. P. (1992): Satellite tracking of wandering albatrosses (Diomedea exulans) in the South Atlantic. Antarctic Science 4: 31–36.

    Article  Google Scholar 

  • Ranvaud, R., Benvenuti, S. & de Oliveira Jordão, J. (2001): The homing ability of pigeons in São Paulo State, Brazil: do they possess a navigational map? In: Royal Institute of Navigation (Ed.): RIN 01 — Orientation & Navigation — Birds, Humans & other Animals: Paper no. 11: 1–31. London.

  • Roper, T. J. (1999): Olfaction in birds. Adv. Study Behav. 28: 247–332.

    Article  Google Scholar 

  • Schlund, W. (1992): Intra-nasal zinc sulphate irrigation in pigeons: effects on olfactory capabilities and homing. J. Exp. Biol. 164: 171–187.

    Article  CAS  Google Scholar 

  • Schmidt-Koenig, K. (1985): Hypothesen und Argumente zum Navigationsvermögen der Vögel. J. Ornithol. 126: 237–252.

    Article  Google Scholar 

  • Schmidt-Koenig, K. (1987): Bird navigation: has olfactory navigation solved the problem? Quart. Rev. Biol. 62: 31–47.

    Article  Google Scholar 

  • Schmidt-Koenig, K. (1991): Über Karten und Kompasse bei Brieftauben. Verh. Dtsch. Zool. Ges. 84: 125–133.

    Google Scholar 

  • Schmidt-Koenig, K. (2001): Zur Geschichte der Orientierungsforschung. J. Ornithol. 142 Sonderheft: 112–123.

    Article  Google Scholar 

  • Schmidt-Koenig, K. & Ganzhorn, J. U. (1991): On the problem of bird navigation. In: Bateson P.P.G. & Klopfer P.H. (Eds.): Perspectives in Ethology, Vol. 9: 261–283. New York.

  • Schmidt-Koenig, K. & Schlichte, H. J. (1972): Homing in pigeons with impaired vision. Proc. Natl. Acad. Sci. USA 69: 2446–2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, M. & Ballschmiter, K. (1999): C3-C14-alkyl nitrates in remote South Atlantic air. Chemosphere 38: 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Hartley, C. A., Desmond, J. E., Glover, G. H., Sullivan, E. V. & Gabrieli, J. D. E. (1999): Blind smell: brain activation induced by an undetected air-borne chemical. Brain 122: 209–217.

    Article  PubMed  Google Scholar 

  • Verheyden, C. & Jouventin, P. (1994): Olfactory behavior of foraging procellariiforms. Auk 111: 285–291.

    Article  Google Scholar 

  • Walcolt, C. (1991): Magnetic maps in pigeons. In: Berthold, P. (Ed.): Orientation in Birds: 38–51. Basel.

  • Waldvogel, J. A. (1987): Olfactory navigation in homing pigeons: are the current models atmospherically realistic? Auk 104: 369–379.

    Article  Google Scholar 

  • Waldvogel, J. A. (1989): Olfactory orientation in birds. Current Ornithology 6: 269–321.

    Article  Google Scholar 

  • Wallraff, H. G. (1966): Über die Heimfindeleistungen von Brieftauben nach Haltung in verschiedenartig abgeschirmten Volieren. Z. Vergl. Physiol. 52: 215–259.

    Article  Google Scholar 

  • Wallraff, H. G. (1970): Weitere Volierenversuche mit Brieftauben: wahrscheinlicher Einfluß dynamischer Faktoren der Atmosphäre auf die Orientierung. Z. Vergl. Physiol. 68: 182–201.

    Article  Google Scholar 

  • Wallraff, H. G. (1972): Homing of pigeons after extirpation of their cochleae and lagenae. Nature New Biol. 236: 223–224.

    Article  CAS  PubMed  Google Scholar 

  • Wallraff, H. G. (1974): Das Navigationssystem der Vögel. München.

  • Wallraff, H. G. (1980): Olfaction and homing in pigeons: nerve-section experiments, critique, hypotheses. J. Comp. Physiol. 139: 209–224.

    Article  Google Scholar 

  • Wallraff, H. G. (1983): Relevance of atmospheric odours and geomagnetic field to pigeon navigation: what is the „map” basis? Comp. Biochem. Physiol. 76A: 643–663.

    Article  Google Scholar 

  • Wallraff, H. G. (1988a): Navigation mit Duftkarte und Sonnenkompass: das Heimfindevermögen der Brieftauben. Naturwiss. 75: 380–392.

    Article  CAS  PubMed  Google Scholar 

  • Walkaff, H. G. (1988b): Olfactory deprivation in pigeons: examination of methods applied in homing experiments. Comp. Biochem. Physiol. 89A: 621–629.

    Google Scholar 

  • Wallraff, H. G. (1989): Simulated navigation based on assumed gradients of atmospheric trace gases (models on pigeon homing, part 2). J. Theor. Biol. 138: 511–528.

    Article  Google Scholar 

  • Wallraff, H. G. (1990a): Navigation by homing pigeons. Ethol. Ecol. Evol. 2: 81–115.

    Article  Google Scholar 

  • Wallraff, H.G. (1990b): Long-distance navigation of homing pigeons based on airborne olfactory signals. In: Døing K.B. (Ed.): ISOT X: Proc. 10th Int. Symp. Olfaction and Taste: 26–35. Oslo.

  • Wallraff, H. G. (1991): Conceptual approaches to avian navigation systems. In: Berthold P (Ed.): Orientation in Birds: 128–165. Basel.

  • Wallraff, H. G. (1996): Seven theses on pigeon homing deduced from empirical findings. J. Exp. Biol. 199: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Wallraff, H. G. (1999): The magnetic map of homing pigeons: an evergreen phantom. J. Theor. Biol. 197: 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Wallraff, H. G. (2000a): Simulated navigation based on observed gradients of atmospheric trace gases (models on pigeon homing, part 3). J. Theor. Biol. 205: 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Wallraff, H. G. (2000b): Path integration by passively displaced homing pigeons? Anim. Behav. 60: F30–F36 (www.academicpress.com/anbehav/forum).

    Article  Google Scholar 

  • Wallraff, H. G. (2001): Navigation by homing pigeons: updated perspective. Ethol. Ecol. Evol. 13: 1–48.

    Article  Google Scholar 

  • Wallraff, H. G., &, Andreae, M. O., (2000): Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus (Ser. B: Chem. Phys. Meteorol.) 52B: 1138–1157.

    Article  CAS  Google Scholar 

  • Wallraff, H. G. & Foà A. (1981): Pigeon navigation: charcoal filter removes relevant information from environmental air. Behav. Ecol. Sociobiol. 9: 67–77.

    Article  Google Scholar 

  • Wallraff, H. G., Benvenuti, S. & Foà, A. (1984): Pigeon navigation: time course of olfactory signal processing and dependence on access to fresh environmental air. J. Comp. Physiol. A 155: 139–150.

    Article  Google Scholar 

  • Wallraff, H. G., Neumann, M. F. & Sinsch, U. (1989): Orientation and homing success of experienced and inexperienced anosmic pigeons. Ethol. Ecol. Evol. 1: 47–64.

    Article  Google Scholar 

  • Wallraff, H. G., Kiepenheuer, J., Neumann, M. F. & Streng, A. (1995): Homing experiments with starlings deprived of the sense of smell. Condor 97: 20–26.

    Article  Google Scholar 

  • Weitnauer, E. & Schemer, E.R. (1980):Apus apus —Mauersegler. In: Glutz von Blotzheim, U.N. (Ed.): Handbuch der Vögel Mitteleuropas, Band 9: 671–712. Wiesbaden.

  • Weller, R., Schrems, O., Boddenberg, A., Gäb, S. & Gautrois, M. (2000): Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N–35°S) measured during the Albatross campaign. J. Geophys. Res. 105: 14,401–14,412.

    Article  CAS  Google Scholar 

  • Wiltschko, R. (1992): Das Verhalten verfrachteter Vögel. Vogelwarte 36: 249–310.

    Google Scholar 

  • Wiltschko, R. (1996): The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J. Exp. Biol. 199: 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko, R. & Wiltschko, W. (1989): Pigeon homing: olfactory orientation - a paradox. Behav. Ecol. Sociobiol. 24: 163–173.

    Article  Google Scholar 

  • Wiltschko, R. & Wiltschko, W. (1999): Das Orientierungssystem der Vögel. II. Heimfinden und Navigation. J. Ornithol. 140: 129–164.

    Article  Google Scholar 

  • Wiltschko, R. & Wiltschko, W. (2000): A strategy for beginners! Reply to Wallraff (2000). Anim. Behav. 60: F37-F43(www.academicpress.com/ anbehav/forum).

    Article  Google Scholar 

  • Wiltschko, W., Wiltschko, R. & Walcott, C. (1987): Pigeon homing: different effects of olfactory deprivation in different countries. Behav. Ecol. Sociobiol. 21: 333–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallraff, H.G. Zur olfaktorischen Navigation der Vögel. J Ornithol 144, 1–32 (2003). https://doi.org/10.1007/BF02465514

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02465514

Keywords

Navigation