Skip to main content
Log in

Morphological classification of retinal ganglion cells in adultXenopus laevis

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Retrograde transport of horseradish peroxidase (HRP) was used to characterise the soma and dendritic arborization of retinal ganglion cells in adultXenopus laevis toad. HRP was administered to the cut end of the optic nerve and the morphological characteristics of HRP-filled ganglion cells were analysed in retinal wholemount preparations using computer assisted morphometry. Ganglion cells were classified according to their soma size, dendritic branching pattern, dendritic field and the number of shaft dendrites. Ganglion cells were divided into 3 major classes on the basis of soma sizes and extent of dendritic field: large (soma size, mean 258.04 μm2±52.03 SD; dendritic field size 0.104 mm2±0.23), medium size (126.7 μm2±37.01; 0.041 mm2±0.013) and small (87.3 μm2±22.69; 0.0061 mm2±0.0035). A more detailed analysis allowed 12 morphologically distinct subgroups to be identified (Types I–XII). Quantitative studies showed that large cells comprise about 1%, medium size about 8–9% and the small cells over 90% of total ganglion cell population. The number of large and medium size ganglion cells corresponded well with the number of myelinated optic fibres and the number of small neurons with the number of unmyelinated optic fibres in the optic nerve. Large ganglion cells were correlated with Class 4 and 5, medium size ganglion cells with Class 3 and small ganglion cells with Class 1 and 2 functionally characterized ganglion cells in the frog retina (Maturana et al. 1960). The retinal distribution of large ganglion cells appear to suggest certain similarities to mammalian alpha type ganglion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Beach DH, Jacobson M (1979) Patterns of cell proliferation in the retina of the clawed frog during development. J Comp Neurol 183: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat's retina. J Physiol (Lond) 240: 397–419

    CAS  Google Scholar 

  • Bunt AH, Minchler DS (1977) Displaced ganglion cells in the retina of the monkey. Invest Ophthalmol Vis Sci 16: 95–98

    PubMed  CAS  Google Scholar 

  • Chung SH, Stirling VR, Gaze RM (1975) The structural and functional development of the retina in larval Xenopus. J Embryol Exp Morphol 33: 915–940

    PubMed  CAS  Google Scholar 

  • Dreher B, Sefton AJ, Ni SYK, Nisbett G (1985) The morphology, number, distribution and central projections of class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 26: 10–48

    PubMed  CAS  Google Scholar 

  • Dunlop SA, Beazley LD (1984) A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis inXenopus laevis. Vision Res 24: 417–427

    Article  PubMed  CAS  Google Scholar 

  • Dunn-Meynell AA, Sharma SC (1986) The visual system of the channel catfish (Ictalurus punctatus). I Retinal ganglion cell morphology. J Comp Neurol 247: 32–55

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich D (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. J Comp Neurol 195: 643–657

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y (1977) A three-group classification of rat retinal ganglion cells: Histological and physiological studies. Brain Res 119: 327–344

    Article  PubMed  CAS  Google Scholar 

  • Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121: 400–415

    Google Scholar 

  • Hitchcock PF (1987) Constant dendritic coverage by ganglion cells with growth of the goldfish retina. Vision Res 27: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock PF, Easter SS Jr (1986) Retinal ganglion cell in goldfish: A quatitative classification into four morphological types, and a quantitative study of the development of one of them. J Neurosci 6: 1037–1050

    PubMed  CAS  Google Scholar 

  • Jenkins S, Straznicky C (1986) Naturally occurring and induced ganglion cell death: a retinal whole-mount autoradiographic study inXenopus. Anat Embryol 174: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Fite KV, Brecha N (1977) Specific projections of displaced ganglion cells upon the accessory optic system in the pigeon (Columbia livia). Proc Natl Acad Sci USA 74: 1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Keating MJ, Gaze RM (1970) Observations on the ‘surround’ properties of the receptive fields of frog retinal ganglion cells. Q J Exp Physiol 55: 129–142

    CAS  Google Scholar 

  • Leventhal AG, Rodieck RW, Dreher B (1981) Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 213: 1139–1142

    PubMed  CAS  Google Scholar 

  • Linden R (1987) Displaced ganglion cells in the retina of the rat. J Comp Neurol 258: 138–144

    Article  PubMed  CAS  Google Scholar 

  • Maturana HR, Lettvin JY, McCullock WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol [Suppl 2] 43: 129–175

    Article  PubMed  Google Scholar 

  • Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali ofRana pipiens. J Comp Neurol 234: 264–275

    Article  PubMed  CAS  Google Scholar 

  • Neville A, Straznicky C (1988) Dendritic field development of large ganglion cells inXenopus. Neurosci Lett [Suppl] 30: S105

    Google Scholar 

  • Nguyen VS, Straznicky C (1987) Retinal development in Bufo marinus. Neurosci Lett [Suppl] 27: 110

    Google Scholar 

  • Nguyen VS, Straznicky C (1988) The morphological characterization and the distribution of alpha-like ganglion cells in the Bufo retina. Proc Aust Physiol Pharmacol Soc 19: 114

    Google Scholar 

  • Peichl L, Ott H, Boycott BB (1987) Alpha ganglion cell in the mammalian retinae. Proc R Soc Lond B 231: 169–197

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1892) The structure of the retina. (Transl. Thorpe SA, Glickstein M 1972) Charles C Thomas, Illinois, USA

    Google Scholar 

  • Rowe MH, Stone J (1976) Properties of ganglion cells in the visual streak of the cat's retina. J Comp Neurol 169: 99–126

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi DS, Murphey RK, Hunt RK, Tompkins R (1984) The development of retinal ganglion cells in a tetraploid strain ofXenopus laevis: A morphological study utilizing intracellular dye injection. J Comp Neurol 224: 231–251

    Article  PubMed  CAS  Google Scholar 

  • Sharma SC (1981) Determination of central retinal connections. In: Cowan WM (ed) Studies in developmental neurobiology, Essays in honour of Victor Hamburger. Oxford Univ Press Oxford

    Google Scholar 

  • Stirling VR, Merrill EG (1987) Functional morphology of frog retinal ganglion cells and their central projections: The dimming detectors. J Comp Neurol 258: 477–495

    Article  PubMed  CAS  Google Scholar 

  • Stone J (1981) The wholemount handbook. A guide to the preparation and analysis of retinal wholemounts. Maitland Sydney

    Google Scholar 

  • Straznicky C, Hiscock J (1984) Post-metamorphic retinal growth in Xenopus. Anat Embryol 169: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Wässle H, Riemann HJ (1978) The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond B 200: 441–461

    PubMed  Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1981) Morphology and topography of on- and off-alpha cells in the cat retina. Proc R Soc Lond B 212: 157–175

    Article  PubMed  Google Scholar 

  • Wilson MA (1971) Optic nerve fibre counts and retinal ganglion cell counts during development ofXenopus laevis (Daudin). Q J Exp Physiol 56: 83–91

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straznicky, C., Straznicky, I.T. Morphological classification of retinal ganglion cells in adultXenopus laevis . Anat Embryol 178, 143–153 (1988). https://doi.org/10.1007/BF02463648

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463648

Key words

Navigation