Skip to main content
Log in

Prediction of limit cycles in mathematical models of biological oscillations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Three conjectures are given which predict the existence of unique stable limit cycle oscillations in a class of piecewise linear (PL) differential equations. The equations are appropriate to model biological or other complex systems in which there are switchlike interactions between the elements of the network. Methods are presented which can be used to develop mathematical models which are conjectured to display stable limit cycle oscillations, from qualitative experimental information about relative phases of activity in the dynamical systems. Several illustrative numerical examples are given, and one experimental example from neurobiology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arbib, M. A. 1973. “Automata Theory in the Context of Theoretical Neurophysiology”Foundations of Mathematical Biology, Ed. R. Rosen, Vol. 3. New York: Academic Press.

    Google Scholar 

  • Field, R. J. and R. M. Noyes. 1974. “Oscillations in Chemical Systems. IV. Limit Cycle Behavior in a Model of a Real Chemical Reaction”.J. Chem. Phys.,60, 1877–1884.

    Article  Google Scholar 

  • Friesen, W. O., M. Poon and G. S. Stent. 1976. “An Oscillatory Neuronal Circuit Generating a Locomotry Rhythm.”Proc. Natn. Acad. Sci. U.S.A.,73, 3734–3738.

    Article  Google Scholar 

  • Gann, D. S., L. E. Ostrander and J. D. Schoeffler. 1968. “A Finite State Model for the Control of Adrenal Cortical Steroid Secretion”. InSystems Theory and Biology, Ed. M. D. Mesarovic, pp. 185–221. New York: Springer.

    Google Scholar 

  • Glass, L. 1975a. “Classification of Biological Networks by their Qualitative Dynamics”J. Theor. Biol.,54, 85–107.

    Article  Google Scholar 

  • — 1975b. “Combinatorial and Topological Methods in Nonlinear Chemical Kinetics”J. Chem. Phys.,63, 1325–1335.

    Article  Google Scholar 

  • — 1977a. “Global Analysis of Nonlinear Chemical Kinetics”. InStatistical Mechanics, Part B: Time Dependent Processes, Ed. B. Berne, pp. 311–349. New York: Plenum.

    Google Scholar 

  • — 1977b, “Combinatorial Aspects of Dynamics in Biological Systems” InStatistical Mechanics and Statistical Methods in Theory and Application: A Tribute to Elliot W. Montroll, Ed. U. Landman, pp. 585–612. New York: Plenum.

    Google Scholar 

  • — and S. A. Kauffman. 1972. “Cooperative Components, Spatial Localization and Oscillatory Cellular Dynamics”J. Theor. Biol.,34, 219–237.

    Article  Google Scholar 

  • — and-—. 1973. “The Logical Analysis of Continuous Nonlinear Biochemical Control Networks”.J. Theor. Biol.,39, 103–129.

    Article  Google Scholar 

  • Harrison, M. A. 1965.Introduction to Switching and Automaton Theory. New York: McGraw-Hill.

    Google Scholar 

  • Hastings, S. 1977. “On the Uniqueness and Global Asymptotic Stability of Periodic Solutions for a Third Order System.” preprint.

  • — and J. D. Murray. 1975. “The Existence of Oscillatory Solutions in the Field-Noyes Model for the Belousov-Zhabotinskii Reaction.”SIAM, J. Appl. Math.,28, 678–688.

    Article  MathSciNet  Google Scholar 

  • —, J. Tyson and D. Webster. 1977. “Existence of Periodic Solutions for Negative Feedback Control Systems.”J. Diff. Eqns. 25, 39–64.

    Article  MATH  MathSciNet  Google Scholar 

  • Hirsch, M. W. and S. Smale. 1974.Differential Equations, Dynamical Systems and Linear Algebra, New York: Academic Press.

    MATH  Google Scholar 

  • Hsu, I. D. 1978a. “Oscillatory Phenomena for the Glass-Kauffman Model of Cellular Dynamics”Math. Biosci., in press.

  • Hsu, I. D. 1978b. “The existence of Nonlocal, Periodic Solutions for the Glass-Kauffman Model of Cellular Dynamics”.SIAM, J. Math. Anal. Applic., in press.

  • — and N. D. Kazarinoff. 1976. “An Applicable Hopf Bifurcation Formula and Instability of Small Periodic Solutions of the Field-Moyes Model”.J. Math. Anal. Applic.,55, 61–89.

    Article  MathSciNet  Google Scholar 

  • Kauffman, S. A. 1969. “Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets”J. Theor. Biol.,22, 437–467.

    Article  MathSciNet  Google Scholar 

  • Kling, U. and G. Szekely. 1968. “Simulation of Rhythmic Nervous Activities, I. Function of Networks with Cyclic Inhibitions”Kybernetik,5, 89–103.

    Article  MATH  Google Scholar 

  • Lanford, W. 1977. “Numerical Solution of Bifurcation Problems for Ordinary Differential Equations”.Numerische Mathematik,28, 177–190.

    Google Scholar 

  • Othmer, H. G. 1976. “The Qualitative Dynamics of a Class of Biochemical Control Circuits”J. Math. Biol.,3, 53–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Ruelle, D. and F. Takens. 1971. “On the Nature of Turbulence”.Commun. Math. Phys.,20, 167–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas, R. 1923. “Boolean Formalization of Genetic Control Circuits”,J. Theor. Biol.,42, 563–575.

    Article  Google Scholar 

  • Tyson, J. J. 1975. “On the Existence of Oscillatory Solutions in Negative Feedback Cellular Control Processes”.J. Math. Biol.,1, 311–315.

    MATH  MathSciNet  Google Scholar 

  • Walter, C. F. 1970. “The Occurrence and Significance of Limit Cycle Behavior in Controlled Biochemical Systems”.J. Theor. Biol,27, 259–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, L., Pasternack, J.S. Prediction of limit cycles in mathematical models of biological oscillations. Bltn Mathcal Biology 40, 27–44 (1978). https://doi.org/10.1007/BF02463128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463128

Keywords

Navigation