Skip to main content
Log in

Image features selected by neurons of the cat primary visual cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The sensitivity of neurons in field 17 of the visual cortex in cats to cross-shaped, Y-shaped, and star-shaped figures flashing in the receptive field was studied. About 40% of the neurons studied (114 of 289) were found to generate large responses (with an average response factor of 3.06±0.32) to one of the figures flashing in the center of the receptive field, as compared with the responses produced to a single bar in the optimal orientation. Most of these neurons (72%) were selectively sensitive to the shape and orientation of figures; the remainder demonstrated some degree of tuning invariance to these properties. The latent periods of responses to figures were usually shorter than those of responses to bars. Tuning parameters for bars and figures were generally related: neurons with acute orientational tuning to a bar were usually highly selective to both the configuration and the orientation people figures. Separate or combined stimulation with crosses in the center and near periphery of the receptive fields demonstrated summation, antagonism, or the lack of any interaction between these zones in producing sensitivity to crosses. Local blockade of intracortical GABAergic inhibition by microiontophoretic application of bicuculline showed that in one third of the neurons studied, sensitivity to figures was generated or enhanced by inhibition in normal conditions, while one third of cells showed suppression by inhibition, and sensitivity in the remainder was independent of inhibition. These data show that reconsideration of existing concepts of the role of field 17 in selecting only first-order shape features of images (i.e., the orientations of single lines) is needed, since almost half the neurons in the cat primary visual cortex can efficiently detect second-order features (angles and line intersections).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Zenkin and A. P. Petrov, “A system for image analysis and the recognition of objects on complex backgrounds,”Biofizika,12, 493–501 (1967).

    PubMed  CAS  Google Scholar 

  2. N. A. Lazareva, I. A. Shevelev, R. V. Novikova, A. S. Tikhomirova, and G. A. Sharaev, “Double orientational tuning of neurons in the primary visual cortex of the cat at different levels of consciousness,”Neirofiziologiya,24, 260–269 (1992).

    CAS  Google Scholar 

  3. N. A. Lazareva, I. A. Shevelev, U. Eysel, and G. A. Garaev, “Bicuculline and orientational tuning of neurons in the visual cortex,”Neirofiziologiya,27, 54–63 (1995).

    CAS  Google Scholar 

  4. N. A. Lazareva, I. A. Sheveleva, R. V. Novikova, A. S. Tikhomirov, and G. A. Sharaev, “The selective sensitivity of striate neurons in the cat to cross-like and angular figures of different orientations,”Neirofiziologiya,27, 403–412 (1995).

    Google Scholar 

  5. N. A. Lazareva, I. A. Shevelev, G. A. Sharaev, R. V. Novikova, and A. S. Tikhomirov, “The sensitivity of neurons in the cat visual cortex to cross-like figures in conditions of stimulation of the center or periphery of the receptive field,”Zh. Vyssh. Nerv.Deyat.,48, 485–495 (1998).

    CAS  Google Scholar 

  6. I. A. Shevelev,Visual Cortex Neurons: Adaptivity and Dynamics of Receptive Fields [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  7. I. A. Shevelev, U. T. Eysel, K.-U. Irmann, and G. A. Sharaev, “Responses of visual cortex neurons to cross-like figures in conditions of local blockade of inhibition,”Dokl. Ross.Akad. Nauk,363, 137–140 (1998).

    CAS  Google Scholar 

  8. I. A. Shevelev, U. T. Eysel, K. U. Irmann, and G. A. Sharaev, “Tuning of striate neurons to cross-like figures in conditions of local blockade of intracortical inhibition,”Zh. Vyssh. Nerv. Deyat.,49, 271–278 (1999).

    CAS  Google Scholar 

  9. I. A. Shevelev, N. A. Lazareva, R. V. Novikova, A. S. Tikhomirov, and G. A. Sharaev, “Tuning of cat visual cortex neurons to the extraction of cross-like figures,”Neirofiziologiya,1, 362–265 (1993).

    Google Scholar 

  10. I. A. Shevelev, G. A. Sharaev, N. A. Lazareva R. V. Novikova, and A. S. Tikhomirov, “Double orientational tuning of cat visual cortex neurons,”Neirofiziologiya,15, 459–466 (1983).

    CAS  Google Scholar 

  11. B. D. Burns and R. Pritchard, “Geometrical illusions and the response of neurones in the cat's visual cortex to angle patterns,”J. Physiol. (London),213, 599–616 (1971).

    CAS  Google Scholar 

  12. R. H. S. Carpenter and C. Blakemore, “Interactions between orientations in human vision,”Exp. Brain Res.,18, 287–303 (1973).

    Article  PubMed  CAS  Google Scholar 

  13. S. Chen and D. M. Levi, “Angle judgment. Is the whole the sum of its parts?,”Vision Res.,36, 1721–1735 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. J. Cudeiro and A. M. Sillito, “Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus,”J. Physiol. (London),490, 481–492 (1996).

    CAS  Google Scholar 

  15. G. C. DeAngelis, J. G. Robson, I. Ohzawa, and R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,”J. Neurophysiol. 68, 144–163 (1992).

    PubMed  CAS  Google Scholar 

  16. R. J. Douglas and K. A. Martin, “A functional microcircuit for cat visual cortex,”J. Physiol. (London),440, 735–769 (1991).

    CAS  Google Scholar 

  17. E. S. Eriksson, “A field theory of visual illusions,”Brit. J. Psychol.,61, 451–466 (1970).

    PubMed  CAS  Google Scholar 

  18. U. T. Eysel, “Lateral inhibitory interactions in area 17 and 18 of the cat visual cortex,”Progr. Brain Res.,90, 407–422 (1992).

    CAS  Google Scholar 

  19. U. T. Eysel, J. M. Crook, and H. F. Machemer, “GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex,”Exp. Brain Res. 80, 626–630 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. U. T. Eysel and I. A. Shevelev, “Time-slice analysis of inhibition in cat striate cortex neurones,”NeuroReport,5, 2033–2036 (1994).

    PubMed  CAS  Google Scholar 

  21. I. Fujita, K. Tanaka, M. Ito, and K. Cheng, “Columns for visual features of objects in monkey inferotemporal cortex,”Nature,360, 343–346 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. M. Georgeson, “Human vision combines oriented filters to compute edges,”Proc. Roy. Soc. Lond.,B249, 235–245 (1992).

    Google Scholar 

  23. C. D. Gilbert and T. N. Wiesel, “The influence of contextual stimuli on the orientational selectivity of cells in primary visual cortex of the cat,”Vision Res.,30, 1689–1701 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. M. S. Gizzi, E. Katz, R. A. Schumer, and J. A. Movshon, “Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex,”J. Neurophysiol.,63, 1529–1543 (1990).

    PubMed  CAS  Google Scholar 

  25. R. Gray and S. J. Hamstra, “Evidence for a neuronal mechanism that encodes angles,”Vision Res.,36, 323–330 (1996).

    Article  PubMed  Google Scholar 

  26. K. L. Grieve and A. M. Sillito, “Length summation in layer VI cells of cat visual cortex and hypercomplex cell inhibitory end zones in the anesthetized cat,”J. Physiol. (London),416, 21–37 (1989).

    Google Scholar 

  27. P. Hammond and D. P. Andrews, “Orientation tuning of cells in areas 17 and 18 of the cat's visual cortex,”Exp. Brain Res.,31, 341–351 (1978).

    PubMed  CAS  Google Scholar 

  28. D. W. Heeley and H. H. Buchanan-Smith, “Recognition of stimulus orientation,”Vision Res.,30, 1429–1437 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. P. Heggelund and K. Albus, “Orientation selectivity of single cells of striate cortex of cat: the shape of orientation tuning curves,”Vision Res.,18, 1067–1071 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. G. H. Henry, “Receptive field classes of cells in the striate cortex of the cat,”Brain Res.,133, 1–28 (1977).

    Article  PubMed  CAS  Google Scholar 

  31. G. H. Henry, B. Dreher, and P. O. Bishop, “Orientation specificity of cells in cat striate cortex,”J. Neurophysiol.,37, 1394–1409 (1974).

    PubMed  CAS  Google Scholar 

  32. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,”J. Physiol. (London),160, 106–154 (1962).

    CAS  Google Scholar 

  33. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat,”J. Neurophysiol.,28, 229–289 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. E. Kobatake and K. Tanaka, “Neuronal selectivities to complex objects features in the ventral visual pathway of the macaque cerebral cortex,”J. Neurophysiol.,71, 856–867 (1994).

    PubMed  CAS  Google Scholar 

  35. L. Lagae, H. Maes, S. Raiguel, D. K. Xiao, and G. A. Orban, “Responses of macaque STS neurons to optic flow components: a comparison of areas MT and mST,”J. Neurophysiol.,71, 1597–1626 (1994).

    PubMed  CAS  Google Scholar 

  36. J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,”Nature,387, 73–76 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. D. Marr, “A theory for the cerebral cortex,”Proc. Roy. Soc. Lond.,B176, 161–234 (1970).

    CAS  Google Scholar 

  38. D. Marr and C. E. Hildreth, “A theory of edge detection,”Proc. Roy. Soc. Lond.,B204, 301–328 (1980).

    Google Scholar 

  39. R. Maske, S. Yamane, and P. O. Bishop, “End-stopped cells and binocular depth discrimination in the striate cortex of cats,”Proc. Roy. Soc. Lond.,B229, 257–276 (1986).

    Article  CAS  Google Scholar 

  40. M. C. Morrone, D. C. Burr, and H. D. Speed, “Cross-orientation inhibition in cat is GABA mediated,”Exp. Brain Res.,67, 635–644 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. J. I. Nelson and B. J. Frost, “Orientation-selective inhibition from beyond the classical visual receptive field,”Brain Res.,139, 359–365 (1978).

    Article  PubMed  CAS  Google Scholar 

  42. J. I. Nelson and B. J. Frost, “Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex,”Exp. Brain Res.,61, 54–61 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. K. Sakai and Y. Miyashita, “Neural organization for the long-term memory of paired associates,”Nature,354, 152–155 (1991).

    Article  PubMed  CAS  Google Scholar 

  44. I. A. Shevelev, K. U. Jimann, G. A. Sharaev, and U. T. Eysel, “Contribution of GABAergic inhibition to sensitivity to cross-like figures in striate cortex,”NeuroReport,9, 3153–3157.

  45. I. A. Shevelev, N. A. Lazareva, R. V. Novikova, A. S. Tikhomirov, and G. A. Sharaev, “Bimodal orientation tuning and detection of crosses and angles in cat visual cortex,”Perception,22S, 138 (1993).

    Google Scholar 

  46. I. A. Shevelev, N. A. Lazareva, R. V. Novikova, A. S. Tikhomirov, and G. A. Sharaev, “Double orientation tuning of units in cat visual cortex,”Neurosci.,61, 965–973 (1994).

    Article  CAS  Google Scholar 

  47. I. A. Shevelev, N. A. Lazareva, G. A. Sharaev, R. V. Novikova, and A. S. Tikhomirov, “Selective and invariant sensitivity to crosses and corners in cat striate neurons,”Neurosci.,84, 713–721 (1998).

    Article  CAS  Google Scholar 

  48. I. A. Shevelev, N. A. Lazareva, G. A. Sharaev, R. V. Novikova, and A. S. Tikhomirov, “Interrelation of tuning characteristics to bar, cross and corner in striate neurons,”Neurosci.,88, 17–25 (1999).

    Article  CAS  Google Scholar 

  49. I. A. Shevelev, R. V. Novikova, N. A. Lazareva, A. S. Tikhomirov, and G. A. Sharaev, “Sensitivity to cross-like figures in the cat striate neurons,”Neurosci.,69, 51–57 (1995).

    Article  CAS  Google Scholar 

  50. A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,”Nature,378, 492–496 (1995).

    Article  PubMed  CAS  Google Scholar 

  51. T. Tsumoto, W. Eckert, and O. D. Creutzfeldt, “Modification of orientation sensitivity of cat visual cortex neurones by removal of GABA-mediated inhibition,”Exp. Brain Res.,34, 351–363 (1979).

    Article  PubMed  CAS  Google Scholar 

  52. G. Wallis and E. T. Rolls, “Invariant face and object recognition in the visual system,”Progr. Neurobiol.,51, 167–194 (1997).

    Article  PubMed  CAS  Google Scholar 

  53. G. Wang, K. Tanaka, and M. Tanifuji, “Optical imaging of functional organization in the monkey inferotemporal cortex,”Science,272, 1665–1668 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 6, pp. 767–780, June, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevelev, I.A. Image features selected by neurons of the cat primary visual cortex. Neurosci Behav Physiol 30, 599–609 (2000). https://doi.org/10.1007/BF02462620

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462620

Key Words

Navigation