Skip to main content
Log in

Eisenstein series and quantum affine algebras

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Yu. Alexeev and L. D. Faddeev, “QuantumT * G as a toy model for conformal field theory,”Commun. Math. Phys.,141, 413–443 (1991).

    Article  Google Scholar 

  2. A. Beilinson, “Coherent sheaves onP n and problems of linear algebra,”Funkts. Anal. Prilozh.,12, No. 3, 68–69 (1978).

    MathSciNet  MATH  Google Scholar 

  3. I. Bernstein and A. Zelevinsky, “Induced representations of reductivep-adic groups. I,”Ann. ENS,10, 441–472 (1977).

    MathSciNet  MATH  Google Scholar 

  4. A. I. Bondal, “Representations of associative algebras and coherent sheaves,”Izv. Akad. Nauk SSSR, Ser. Mat.,34, 23–42 (1990).

    MathSciNet  MATH  Google Scholar 

  5. D. Bump, “The Rankin-Selberg method: a survey,” In:Number Theory, Trace Formulas and Discrete Groups. Symposium in Honor of A. Selberg, Academic Press (1989), pp. 49–109.

  6. V. Chari and A. Pressley,A Guide to Quantum Groups, Cambridge Univ. Press (1995).

  7. P. Deligne, “Constantes des equations fonctionelles des fonctionsL,” In:Lecture Notes Math., Vol. 349, Springer-Verlag (1973), pp. 501–597.

  8. J. Ding and I. Frenkel, “Isomorphism of two realizations of quantum affine algebra\(U_q (\widehat{gl(n)})\),”Commun. Math. Phys.,156, 277–300 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. G. Drinfeld, “A new realization of Yangians and quantized enveloping algebras,”Sov. Math. Dokl.,36, 212–216 (1988).

    MathSciNet  Google Scholar 

  10. V. G. Drinfeld,A new realization of Yangians and quantized enveloping algebras [in Russian], Preprint FTINT No. 30, Kharkov (1986).

  11. V. G. Drinfeld, “Quantum groups,” In:Proc. ICM-86 (Berkeley), Vol. 1, Amer. Math. Soc. (1987), pp. 798–820.

  12. I. Frenkel and N. Jing, “Vertex representations of quantum affine algebras,”Proc. Natl. Acad. USA,85, 9373–9377 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Flicker and D. Kazhdan, “Geometric Ramanujan conjecture and Drinfeld reciprocity law,” In:Number Theory, Trace Formulas and Discrete Groups. Symposium in Honor of A. Selberg, Academic Press (1989), pp. 201–218.

  14. I. Frenkel, J. Lepowsky, and A. Meurman,Vertex Operators and the Monster, Academic Press (1986).

  15. P. Freyd,Abelian Categories, Harper & Row, New York (1964).

    MATH  Google Scholar 

  16. W. Geigle and H. Lenzing, “A class of weighted projective curves arising in representation theory of finite-dimensional algebras,” In: Lecture Notes Math., Vol. 1273, Springer-Verlag (1988), pp. 265–297.

  17. I. M. Gelfand and M. A. Najmark, “The principal series of irreducible representations of the complex unimodular group,”Dokl. Akad. Nauk SSSR,56, 3–4 (1947). In:Collected Papers of I. M. Gelfand, Vol. 2, Springer-Verlag (1988), pp. 128–129.

    MATH  Google Scholar 

  18. V. Ginzburg, M. Kapranov, and E. Vasserot, “Langlands reciprocity for algebraic surfaces,”Int. Math. Res. Notes,2, 147–160 (1995).

    MathSciNet  MATH  Google Scholar 

  19. J. A. Green, “Hall algebras, hereditary algebras and quantum groups,”Invent. Math.,120, 361–377 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Grojnowski,Affinizing quantum algebras: from D-modules to K-theory, Preprint (1994).

  21. G. Harder, “Chevalley groups over function fields and automorphic forms,”Ann. Math.,100, 249–300 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Harder, “Minkowskische Reduktiontheorie über Funktionenkörper,”Invent. Math.,7, 33–54 (1968).

    Article  MathSciNet  Google Scholar 

  23. G. Harder and M. S. Narasimhan, “On the cohomology groups of moduli spaces of vector bundles on curves,”Math. Ann.,212, 215–248 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, “Rankin-Selberg convolutions,”Amer. J. Math.,105, 367–464 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Kac,Infinite-Dimensional Lie Algebras, Cambridge University Press (1992).

  26. M. Kapranov, “Analogies between the Langlands correspondence and the topological quantum field theory,” In:Functional Analysis on the Eve of the 21st Century, Vol. 1, Birkhäuser, Boston (1995), pp. 119–151.

    Chapter  Google Scholar 

  27. R. M. Kashaev,Heisenberg double and the pentagon relation, Preprint q-alg/9503005.

  28. R. P. Langlands, “On the functional equations satisfied by Eisenstein series,” In:Lecture Notes Math., Vol. 544, Springer-Verlag (1976).

  29. R. P. Langlands,Euler Products, Yale Univ. Press (1971).

  30. R. P. Langlands, “Eisenstein series,” In:Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. Vol. 9, Amer. Math. Soc. (1966), pp. 235–252.

  31. G. Lusztig,Introduction to Quantum Groups, Progr. Math., Vol. 110, Birkhäuser, Boston (1993).

    MATH  Google Scholar 

  32. G. Lusztig, “Canonical bases arising from quantized Enveloping algebras,”J. Amer. Math. Soc.,3, 447–498 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Lusztig, “Quivers, perverse sheaves and quantized enveloping algebras,”J. Amer. Math. Soc.,4, 365–421 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Lusztig, “Character sheaves. I, II,”Adv. Math.,56, 193–237 (1985).57, 226–265 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  35. I. G. Macdonald,Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford (1995).

    MATH  Google Scholar 

  36. C. Moeglin and J.-L. Waldspurger,Spectral Decomposition and Eisenstein Series, Cambridge Univ. Press (1995).

  37. L. E. Morris, “Eisenstein series for reductive groups over global function fields. I, II,”Can. J. Math.,34, 91–168, 1112–1282 (1982).

    Article  MATH  Google Scholar 

  38. C. M. Ringel, “Hall algebras and quantum groups,”Invent. Math.,101, 583–592 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  39. C. M. Ringel, “The composition algebra of a cyclic quiver,”Proc. London Math. Soc. (3),66, 507–537 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  40. C. M. Ringel, “Hall algebras revisited,” In:Israel Math. Conf. Proc., Vol. 7 (1993), pp. 171–176.

  41. J. Shalika, “Multiplicity one theorem forGL(n),”Ann. Math.,100, 171–193 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. A. Semenov-Tian-Shansky, “Poisson Lie groups, quantum duality principle, and the quantum double,” In:Contemp. Math., Vol. 178, Amer. Math. Soc. (1994),, pp. 319–248.

  43. U. Stuhler, “On the cohomology ofSL n over rings of algebraic functions,” In:Lecture Notes Math., Vol. 967, Springer-Verlag (1982), pp. 316–359.

  44. A. Varchenko,Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, World Scientific, Singapore (1995).

    MATH  Google Scholar 

  45. J. Xiao,Hall algebra in a root category, Preprint 96-070, Univ. of Bielefield (1995).

  46. J. Xiao,Drinfeld double and Green-Ringel theory of Hall algebras, Preprint 95-071, Univ. of Bielefeld (1995).

  47. A. Zelevinsky, “Representations of Finite Classical Groups (a Hopf Algebra Approach),” In:Lecture Notes Math., Vol. 869, Springer-Verlag (1981).

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 41, Algebraic Geometry-7, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapranov, M.M. Eisenstein series and quantum affine algebras. J Math Sci 84, 1311–1360 (1997). https://doi.org/10.1007/BF02399194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02399194

Keywords

Navigation