Skip to main content
Log in

Culture of the astaxanthin-producing green algaHaematococcus pluvialis 1. Effects of nutrients on growth and cell type

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The freshwater green algaHaematococcus pluvialis (Strain Vischer 1923/2) grows best at high nitrate concentrations (about 0.5 to 1.0 g 1−1 KNO3), intermediate phosphate concentration (about 0.1 g 1−1 K2HPO4) and over a wide range of Fe concentrations. Low nitrate or high phosphate induce the formation of reddish palmella cells and aplanospores. Mixotrophic growth with acetate improves growth rate and final cell yield, and also stimulates the formation of the astaxanthin-containing palmella cells and aplanospores.H. pluvialis cannot grow above about 28 °C, or above a salinity of approximately 1% w/v NaCl. An increase in temperature or the addition of NaCl also stimulates the formation of palmella cells and aplanospores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Amotz A (1987) Effect of irradiance and nutrient deficiency on the chemical composition ofDunaliella bardawil Ben-Amotz and Avron (Volvocales, Chlorophyta). J. Plant Physiol. 3: 479–487.

    Google Scholar 

  • Borowitzka MA (1988a) Vitamins and fine chemicals from micro-algae. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 153–196.

    Google Scholar 

  • Borowitzka MA (1988b) Fats, oils and hydrocarbons. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology, Cambridge U.P., Cambridge, 257–287.

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988a)Dunaliella. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 27–58.

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988b) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures ofDunaliella salina. In Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, 371–381.

    Google Scholar 

  • Droop MR (1954) Conditions governing haematochrome formation inHaematococcus pluvialis Flotow. Arch. Mikrobiol. 20: 391–391.

    Article  CAS  PubMed  Google Scholar 

  • Droop MR (1955) Carotenogenesis inHaematococcus pluvialis. Nature 175: 42.

    CAS  Google Scholar 

  • Droop MR (1961)Haematococcus pluvialis and its allies. III. Organic nutrition. Rev. Algolog. 3: 247–259.

    Google Scholar 

  • Elliot AM (1931) Morphology and life history ofHaematococcus pluvialis. Arch. Protistenk. 82: 250–272.

    Google Scholar 

  • Endo H, Sansawa H, Nakajima K (1977) Studies onChlorella regularis, heterotrophic fast-growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18: 199–205.

    CAS  Google Scholar 

  • Foss P, Storebakken T, Schiedt K, Liaaen-Jensen S, Austreng E, Streiff K (1984) Carotenoids in diets for salmonids. I. Pigmentation of rainbow trout with the individual optical isomers of astaxanthin in comparison with canthaxanthin. Aquaculture 41: 213–226.

    Article  CAS  Google Scholar 

  • Goldman JC, Dennet MR, Riley CB (1982) Effect of nitrogen-mediated changes in alkalinity on pH control and CO2 supply in intensive microalgal cultures. Biotech. Bioengng. 24: 619–631.

    Article  CAS  Google Scholar 

  • Goodwin TW, Jamikorn M (1954) Studies in carotenogenesis: II. Carotenoid synthesis in the algaHaematococcus pluvialis. Biochem. J. 57: 376–681.

    CAS  PubMed  Google Scholar 

  • Grung M, Bjerkeng B, Borowitzka MA, Skulberg O, Liaaen-Jensen S (1990) Alternative sources of astaxanthin, including secondary carotenoids of microalgae. Proc. 9th Internat. Symp. Carotenoids, Kyoto.

  • Jacobsen HC (1912) Kulturbedingungen vonHaematococcus pluvialis. Folia Microbiol. Delft, 1: 163.

    Google Scholar 

  • Lwoff A, Lwoff M (1929) Le pouvoir de synthèse deChlamydomonas agloëformis etHaematococcus pluvialis en culture pure à l'obscurité. C.R. Soc. Biol. Paris, 102: 569–571.

    Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater and blue-green algae under different nitrogen regimes. Phytochemistry 23: 207–216.

    CAS  Google Scholar 

  • Pringsheim EG (1914) Kulturversuche mit chlorophyllführenden Mikroorganismen. IV. Die Ernährung vonHaematococcus pluvialis Flot. Beitr. Biol. Pflanz. 11: 305–332.

    Google Scholar 

  • Pringsheim EG (1966) Nutritional requirements ofHaematococcus pluvialis and related species. J. Phycol. 2: 1–7.

    Google Scholar 

  • Proctor VW (1957) Preferential assimilation of nitrate iron byHaematococcus pluvialis. Am. J. Bot. 44: 141–143.

    CAS  Google Scholar 

  • Renstrøm B, Borch G, Skulberg OM, Liaaen-Jensen S (1981) Optical purity of (3S,3S′)-astaxanthin fromHaematococcus pluvialis. Phytochem. 20: 2561–2564.

    Article  Google Scholar 

  • Santos MF, Mesquita JF (1984) Ultrastructural study ofHaematococcus lacustris (Girad.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis. Cytologie 49: 215–228.

    Google Scholar 

  • Semenko VE, Abdullayev AA (1980) Parametric control of β-carotene biosynthesis inDunaliella salina cells under conditions of intensive cultivation. Fiziol. Rasten. 27: 31–41.

    Google Scholar 

  • Sommer TR, Potts WT, Morrisey NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94: 79–88.

    Article  CAS  Google Scholar 

  • Sprey B (1970) Die Lokalisierung von Sekundarcarotinoiden vonHaematococcus pluvialis Flowtow emen. Wille. Protoplasma 71: 235–250.

    CAS  Google Scholar 

  • Storebakken T, Foss P, Schiedt K, Austreng E, Liaaen-Jensen S, Manz U (1987) Carotenoid diets in salmonids. IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate and canthaxanthin. Aquaculture 65: 279–292.

    Article  CAS  Google Scholar 

  • Stross RG (1963) Nitrate preference inHaematococcus pluvialis is controlled by strain, age of inoculum and pH of the medium. Can. J. Microbiol. 9: 33–40.

    CAS  Google Scholar 

  • Syrett PJ (1962) Nitrogen assimilation. In Lewin RA (ed.), Physiology and Biochemistry of Algae. Academic Press, London, 171–188.

    Google Scholar 

  • Viala G (1966) L'astaxanthin chez leChlamydomonas nivalis Wille. C.R. Acad. Sci. Paris D. 263: 1383–1386.

    CAS  Google Scholar 

  • Wiessner W (1979) Photoassimilation of organic compounds. In Gibbs M, Latzko E (eds), Encyclopedia of Plant Physiology, New Series, Vol. 6. Springer Verlag, Berlin, 181–189.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowitzka, M.A., Huisman, J.M. & Osborn, A. Culture of the astaxanthin-producing green algaHaematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3, 295–304 (1991). https://doi.org/10.1007/BF02392882

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392882

Key words

Navigation