Skip to main content
Log in

Raman spectroscopic and structural studies of heat-treated graphites for lithium-ion batteries

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Standard graphite TIMREX® SLX 50 was oxidised at 500–800 °C under air atmosphere in a muffle and a rotary furnace. Scanning Electron Microscopy (SEM), Raman spectroscopy, and X-Ray Powder Diffraction (XRD) were used to study the changes in surface morphology and crystallinity. The results show a slight increase of the La value and a decrease of the rhombohedral fraction with increased heat-treatment temperature (HTT). XRD measurements show no significant change in La values within the bulk of graphite samples. Above 700 °C SEM images of graphite reveals holes and cavities, whereas heat-treatment temperatures below 700 °C do not significantly affect graphite materials parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. M.E. Spahr, H. Wilhelm, F. Joho, P. Novák, ITE Batt. Letters2(3), 370, (2001).

    Google Scholar 

  2. J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong, U. von Sacken, in: Lithium Batteries, New Materials, Developments and Perspectives (G. Pistoia, Ed.) Chapter 1, Elsevier, Amsterdam (1994).

    Google Scholar 

  3. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Adv. Mater.10(10), 725, (1998).

    Article  CAS  Google Scholar 

  4. F. Joho, B. Rykart, A. Blome, P. Novák, H. Wilhelm, M.E. Spahr, J. Power Sources97–98, 78, (2001).

    Google Scholar 

  5. K. Kinoshita, Electrochemical and Physicochemical Properties of Carbon, Wiley and Sons, New York, (1988).

    Google Scholar 

  6. J. Randin, Encyclopedia of Electrochemistry of the Elements (A. Bard, Ed.) Marcel Decker, New York, Vol. 7. (1976).

    Google Scholar 

  7. E. Peled, D. Golodnitsky, J. Penciner, Handbook of Battery Materials (J.O. Besenhard, Ed.) Wiley-VCH, New York (1999).

    Google Scholar 

  8. M.E. Spahr, H. Wilhelm, F. Joho, J.C. Panitz, J. Wambach, P. Novák, N. Dupont-Pavlovsky, J. Electrochem. Soc.149(8), A960 (2002).

    Google Scholar 

  9. D. Bar-Tow, E. Peled, L. Burstein, J. Electrochem. Soc.146(3), 824 (1999).

    Article  CAS  Google Scholar 

  10. R.I.R. Blyth, H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard, P. Golob, M. Winter, Appl. Surf. Sci.167(1–2), 99 (2000).

    CAS  Google Scholar 

  11. D. Aurbach, M.D. Levi, E. Levi, A. Schechter, J. Phys. Chem. B101(12), 2195 (1997).

    Article  CAS  Google Scholar 

  12. B.R. Puri, Chemistry and Physics of Carbon (P.A. Thrower, Ed.) Vol. 6, 191, Marcel Dekker, New York, (1970).

    Google Scholar 

  13. B.R. Puri, Pennsylvania State University. Proc. 5th Biennial Conference on Carbon, Vol. 1, 165, Pergammon Press, Oxford, (1962).

    Google Scholar 

  14. H.P. Boehm, Carbon40, 145 (2002).

    Article  CAS  Google Scholar 

  15. E. Peled, C. Menachem, D. BarTow, A. Melman, J. Electrochem. Soc.143(1), L4 (1996).

    Google Scholar 

  16. Y.P. Wu, C. Jiang, C. Wan, R. Holze, J. Appl. Electrochem.32(9), 1011 (2002).

    Article  CAS  Google Scholar 

  17. G.T.K. Fey, K.L. Chen, Y.C. Chang, Mater. Chem. Phys.76(1), 1 (2002).

    CAS  Google Scholar 

  18. H. Buqa, P. Golob, M. Winter, J.O. Besenhard, J. Power Sources97–98, 122 (2001).

    Google Scholar 

  19. H. Buqa, C. Grogger, M.V.S. Alvarez, J.O. Besenhard, M. Winter, J. Power Sources97–98, 126 (2001).

    Google Scholar 

  20. F. Tuinstra, J.L. Koenig, J. Chem. Phys.53(3), 1126 (1970).

    Article  CAS  Google Scholar 

  21. H. Wilhelm, M. Lelaurin, E. McRae, B. Humbert, J. Appl. Phys.84(12), 6552 (1998).

    Article  CAS  Google Scholar 

  22. Y. Kawashima, G. Katagiri, Phys. Rev. B52(14), 10053 (1995).

    Article  CAS  Google Scholar 

  23. F. Cao, I.V. Barsukov, H.J. Bang, P. Zaleski, J. Prakash, J. Electrochem. Soc.147(10), 3579 (2000).

    CAS  Google Scholar 

  24. G. Nadeau, X.Y. Song, M. Masse, A. Guerfi, K. Kinoshita, K. Zaghib, Intercalation Compounds for Battery Materials99(24) 326 (2000) The Electrochemical Society Inc.

    Google Scholar 

  25. C.S. Wang, G.T. Wu, W.Z. Li, J. Power Sources76(1), 1 (1998).

    Google Scholar 

  26. R.J. Nemanich, S.A. Solin, Phys. Rev. B20(2), 392 (1979).

    Article  CAS  Google Scholar 

  27. M. Nakamizo, K. Tamai, Carbon22(2), 197 (1983).

    Google Scholar 

  28. M.S. Dresselhaus, Adv. Phys.30, 290 (1991).

    Google Scholar 

  29. J. Lachter, R.H. Bragg, Phys. Rev. B33(12), 8903 (1986).

    Article  CAS  Google Scholar 

  30. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater.2(5), 557 (1990).

    CAS  Google Scholar 

  31. M. Endo, C. Kim, T. Karaki, T. Fujino, M.J. Matthews, S.D.M. Brown, M.S. Dresslhaus, Synt. metals98(1), 17 (1998).

    CAS  Google Scholar 

  32. A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, J. Electrochem. Soc.142(4), 1041 (1995).

    CAS  Google Scholar 

  33. T. Gruber, T.W. Zerda, M. Gerspacher, Carbon32(7), 1377 (1994).

    Article  CAS  Google Scholar 

  34. G.T.K. Fey, Y.C. Kao, Mater. Chem. Phys.73(1), 37 (2002).

    CAS  Google Scholar 

  35. N.N. Greenwood, A. Earnshaw, Chemestry of the Elements, Pergamon Press, New York, (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goers, D., Buqa, H., Hardwick, L. et al. Raman spectroscopic and structural studies of heat-treated graphites for lithium-ion batteries. Ionics 9, 258–265 (2003). https://doi.org/10.1007/BF02375977

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375977

Keywords

Navigation