Skip to main content
Log in

Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A technique is described for exact estimation of kernels in functional expansions for nonlinear systems. The technique operates by orthogonalizing over the data record and in so doing permits a wide variety of input excitation. In particular, the excitation is not limited to inputs that are white, Gaussian, or lengthy. Diagonal kernel values can be estimated, without modification, as accurately as off-diagonal values. Simulations are provided to demonstrate that the technique is more accurate than the Lee-Schetzen method with a white Gaussian input of limited duration, retaining its superiority when the system output is corrupted by noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrett, J.F. The use of functionals in the analysis of nonlinear physical systems. J. Elect. Control 15:567–615; 1963.

    Article  Google Scholar 

  2. Barrett, J.F. Functional series representation of nonlinear systems—Some theoretical comments. 6th. IFAC Symp. Ident. Sys. Param. Est. 1:251–256; 1982.

    Google Scholar 

  3. Frechet, M. Sur les fonctionnelles continues. Ann. Sci. Ecole Normal Sup. 27:193–219; 1910.

    Google Scholar 

  4. Goussard, Y., Krenz, W.C., Stark, L. An improvement of the Lee and Schetzen cross-correlation method. IEEE Trans. Automat. Contr. AC-30:895–898; 1985

    Article  Google Scholar 

  5. Hunter, I.W., Korenberg, M.J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55:135–144; 1986.

    CAS  PubMed  Google Scholar 

  6. Korenberg, M.J. Identification of biological cascades of linear and static nonlinear systems. Proc. 16th Midwest Symp. Circuit Theory 18.2:1–9; 1973.

    Google Scholar 

  7. Korenberg, M.J. Crosscorrelation analysis of neural cascades. Proc. 10th Ann. Rocky Mountain Bioeng. Symp. 1:47–52; 1973.

    Google Scholar 

  8. Korenberg, M.J.. Statistical identification of parallel cascades of linear and nonlinear systems. 6th IFAC Symp. Ident. Sys. Param. Est. 1:580–585; 1982.

    Google Scholar 

  9. Korenberg, M. J. Identifying noisy cascades of linear and static nonlinear systems. 7th IFAC Symp. Ident. Sys. Param. Est. 1:421–426; 1985.

    Google Scholar 

  10. Korenberg, M.J. Orthogonal identification of nonlinear difference equation models. Proc. 28th Midwest Symp. Circuit Sys. 1:90–95; 1985.

    Google Scholar 

  11. Korenberg, M.J., Hunter, I.W. The identification of nonlinear biological systems:LNL cascade models. Biol. Cybern. 55:125–134; 1986.

    CAS  PubMed  Google Scholar 

  12. Lee, Y.W., Schetzen, M. Measurement of the Wiener kernels of a nonlinear system by crosscorrelation. Int. J. Contr. 2:237–254; 1965.

    Article  Google Scholar 

  13. Marmarelis, P.Z., Marmarelis, V.Z. Analysis of Physiological Systems. New York: Plenum; 1978.

    Book  Google Scholar 

  14. Marmarelis, V.Z. Identification of nonlinear systems through quasi-white test signals. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1976.

    Google Scholar 

  15. Melton, R.B., Kroeker, J.P. Wiener functional for an N-level uniformly distributed discrete random process. 6th IFAC Symp. Ident. Sys. Param. Est. 2:1169–1174; 1982.

    Google Scholar 

  16. Palm, G., Poggio, T. The Volterra representation and the Wiener expansion: Validity and pitfalls. Siam J. Appl. Math. 33:195–216; 1977.

    Article  Google Scholar 

  17. Palm, G., Poggio, T. Stochastic identification methods for nonlinear systems: An extension of the Wiener theory. Siam J. Appl. Math. 34:524–534; 1978.

    Article  Google Scholar 

  18. Sakuranaga, M., Sato, S., Hida, E., Naka, K.-I. Nonlinear analysis: Mathematical theory and biological applications. CRC Crit. Rev. Biomed. Eng. 14:127–184; 1986.

    CAS  Google Scholar 

  19. Schetzen, M. A theory of nonlinear system identification. Int. J. Contr. 20:557–592; 1974.

    Article  Google Scholar 

  20. Swerup, C. On the choice of noise for the analysis of the peripheral auditory system. Biol. Cybern. 29:97–104; 1978.

    Article  CAS  PubMed  Google Scholar 

  21. Weiss, T.F. A model of the peripheral auditory system. Kybernetik 3:153–175; 1966.

    Article  CAS  PubMed  Google Scholar 

  22. Wiener, N. Nonlinear Problems in Random Theory. New York: Wiley; 1958.

    Google Scholar 

  23. Zadeh, L. On the representation of nonlinear operators. IRE Wescon. Conv. Rec. 2:105–113; 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenberg, M.J., Bruder, S.B. & McLlroy, P.J. Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems. Ann Biomed Eng 16, 201–214 (1988). https://doi.org/10.1007/BF02364581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364581

Keywords

Navigation