Skip to main content

Advertisement

Log in

A note on inverted mandelbrot sets

  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A simple technique is described for demonstrating artistically interesting behavior in chaotic systems defined by complex dynamics. In particular, the Mandelbrot set for the iterative process\(\zeta \to \zeta ^p + (1/u)^p \) is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barnsley M (1988) Fractals everywhere. Academic Press, New York

    Google Scholar 

  • Brooks R, Matelski JP (1981) The dynamics of 2-generator subgroups of PSL(2, C). In: Kyra I, Maskit B (eds) Riemann surfaces and related topics: proceedings of the 1978 Stony Brook Conference Princeton University Press, Princeton NJ (Note: this 1978 paper contains simple computer graphics and mathematical descriptions of both Julia and Mandelbrot sets)

    Google Scholar 

  • Devaney R, Krych M (1984) Dynamics of exp(z). Ergodyn Theory Dyn Syst 4:35–52

    MathSciNet  Google Scholar 

  • Douady A, Hubbard J (1982) Iteration des polynomes quadratiques complexes. Comptes Rendus (Paris) 2941:123–126

    MathSciNet  Google Scholar 

  • Fatou P (1919/1920) Sur les equations fonctionelles. Bull Soc Math Fr 47:161–271

    MathSciNet  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press New York

    Google Scholar 

  • Hubbard J (1986) Order in chaos. Engineering: Cornell Q 20(3):20–26

    Google Scholar 

  • Julia G (1918) Memoire sur l'iteration des fonctions rationnelles. J Math Pure Appl 4:47–245

    Google Scholar 

  • Lakhtakia A, Vasundara V, Messier R, Varadan V (1987) On the symmetries of the Julia sets for the processz→z p+c. J Phys A: Math Gen 20:3533–3535

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Peitgen H, Richter P (1986) The beauty of fractals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Peitgen H, Saupe D (eds) (1988) The science of fractal images. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pickover C (1970) Computer, pattern, chaos and beauty. St Martin's Press, New York

    Google Scholar 

  • Stevens C (ed) (1989) Fractal programming in C, M & C Books, Redwood City, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickover, C.A. A note on inverted mandelbrot sets. The Visual Computer 6, 227–229 (1990). https://doi.org/10.1007/BF02341047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02341047

Key words