Abstract
A simple technique is described for demonstrating artistically interesting behavior in chaotic systems defined by complex dynamics. In particular, the Mandelbrot set for the iterative process\(\zeta \to \zeta ^p + (1/u)^p \) is explored.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Barnsley M (1988) Fractals everywhere. Academic Press, New York
Brooks R, Matelski JP (1981) The dynamics of 2-generator subgroups of PSL(2, C). In: Kyra I, Maskit B (eds) Riemann surfaces and related topics: proceedings of the 1978 Stony Brook Conference Princeton University Press, Princeton NJ (Note: this 1978 paper contains simple computer graphics and mathematical descriptions of both Julia and Mandelbrot sets)
Devaney R, Krych M (1984) Dynamics of exp(z). Ergodyn Theory Dyn Syst 4:35–52
Douady A, Hubbard J (1982) Iteration des polynomes quadratiques complexes. Comptes Rendus (Paris) 2941:123–126
Fatou P (1919/1920) Sur les equations fonctionelles. Bull Soc Math Fr 47:161–271
Feder J (1988) Fractals. Plenum Press New York
Hubbard J (1986) Order in chaos. Engineering: Cornell Q 20(3):20–26
Julia G (1918) Memoire sur l'iteration des fonctions rationnelles. J Math Pure Appl 4:47–245
Lakhtakia A, Vasundara V, Messier R, Varadan V (1987) On the symmetries of the Julia sets for the processz→z p+c. J Phys A: Math Gen 20:3533–3535
Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco
Peitgen H, Richter P (1986) The beauty of fractals. Springer, Berlin Heidelberg New York
Peitgen H, Saupe D (eds) (1988) The science of fractal images. Springer, Berlin Heidelberg New York
Pickover C (1970) Computer, pattern, chaos and beauty. St Martin's Press, New York
Stevens C (ed) (1989) Fractal programming in C, M & C Books, Redwood City, CA
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pickover, C.A. A note on inverted mandelbrot sets. The Visual Computer 6, 227–229 (1990). https://doi.org/10.1007/BF02341047
Issue Date:
DOI: https://doi.org/10.1007/BF02341047