Skip to main content
Log in

Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider as in Parts I and II a family of linearly elastic shells of thickness 2ɛ, all having the same middle surfaceS=ϕ(ϖ)⊂R 3, whereωR 2 is a bounded and connected open set with a Lipschitz-continuous boundary, andϕ ∈ ℒ3 (ϖ;R 3). The shells are clamped on a portion of their lateral face, whose middle line isϕ(γ 0), whereγ 0 is a portion of∂ω withlength γ 0>0. For allɛ>0, let\(\zeta _i^\varepsilon\) denote the covariant components of the displacement\(u_i^\varepsilon g^{i,\varepsilon }\) of the points of the shell, obtained by solving the three-dimensional problem; let\(\zeta _i^\varepsilon\) denote the covariant components of the displacement\(\zeta _i^\varepsilon\) a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding

$$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$

such that

$$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$

where\(a^{\alpha \beta \sigma \tau }\) are the components of the two-dimensional elasticity tensor ofS,\(\gamma _{\alpha \beta }\)(η) and\(\rho _{\alpha \beta }\)(η) are the components of the linearized change of metric and change of curvature tensors ofS, and\(p^{i,\varepsilon }\) are the components of the resultant of the applied forces.

Under the same assumptions as in Part I, we show that the fields\(\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon\) and\(\zeta _i^\varepsilon\) a i, both defined on the surfaceS, have the same principal part asɛ → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part asɛ → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon, S., Douglis, A. &Nirenberg, L. [1964]: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II,Comm. Pure Appl. Math. 17, 35–92.

    MathSciNet  Google Scholar 

  • Alexandrescu, O. [1994]: Théorème d'existence pour le modèle bidimensionnel de coque non linéaire de W.T. Koiter,C. R. Acad. Sci. Paris, Sér. I, 319, 899–902.

    MATH  MathSciNet  Google Scholar 

  • Bernadou, M. &Ciarlet, P. G. [1976]: Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, inComputing Methods in Applied Sciences and Engineering (R. Glowinski &J. L. Lions, editors), pp. 89–136, Lecture Notes in Economics and Mathematical Systems, Vol. 134, Springer-Verlag.

  • Bernadou, M., Ciarlet, P. G. &Miara, B. [1994]: Existence theorems for two-dimensional linear shell theories,J. Elasticity 34, 111–138.

    MathSciNet  Google Scholar 

  • Blouza, A. &Le Dret, H. [1994a]: Sur le lemme du mouvement rigide, C. R. Acad. Sci. Paris, Sér.I, 319, 1015–1020.

    Google Scholar 

  • Blouza, A. &Le Dret, H. [1994b]: Existence et unicité pour le modèle de Koiter pour une coque peu régulière,C. R. Acad. Sci. Paris, Sér. I, 319, 1127–1132.

    Google Scholar 

  • Caillerie, D. &Sanchez-Palencia, E. [1996a]: A new kind of singular-stiff problems and application to this elastic shells,Math. Models Methods Appl. Sci. 5, 47–66.

    MathSciNet  Google Scholar 

  • Ciarlet, P.G. &Lods, V. [1996a]: On the ellipticity of linear membrane shell equations,J. Math. Pures Appl. 75, 107–124.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996b]: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations,Arch. Rational Mech. Anal. 136, 119–161.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996c]: Asymptotic analysis of linearly elastic shells. “Generalized membrane shells”,J. Elasticity 43, 147–188.

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P. G., Lods, V. &Miara, B. [1996]: Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations,Arch. Rational Mech. Anal. 136, 163–190.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Miara, B. [1992]: On the ellipticity of linear shell models,Z. angew. Math. Phys. 43, 243–253

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Sanchez-Palencia, E. [1996]: An existence and uniqueness theorem for the two-dimensional linear membrane shell equations,J. Math. Pures Appl. 75, 51–67.

    MathSciNet  Google Scholar 

  • Destuynder, P. ]1985]: A classification of thin shell theories,Acta Applicandœ Mathematicœ 4, 15–63.

    MATH  MathSciNet  Google Scholar 

  • Koiter, W.T. [1970]: On the foundations of the linear theory of thin elastic shells,Proc. Kon. Ned. Akad. Wetensch. B73, 169–195.

    MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1980]:Nonhomogeneous Media and Vibration Theory, Springer-Verlag.

  • Sanchez-Palencia, E. [1989a]: Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée,C.R. Acad. Sci. Paris, Sér. I, 309, 411–417.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1989b]: Statique et dynamique des coques minces. II. Cas de flexion pure inhibée,C. R. Acad. Sci. Paris Sér. I, 309, 531–537.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by the Editor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G., Lods, V. Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations. Arch. Rational Mech. Anal. 136, 191–200 (1996). https://doi.org/10.1007/BF02316977

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316977

Keywords

Navigation