Skip to main content
Log in

Principal component analysis of three-mode data by means of alternating least squares algorithms

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A new method to estimate the parameters of Tucker's three-mode principal component model is discussed, and the convergence properties of the alternating least squares algorithm to solve the estimation problem are considered. A special case of the general Tucker model, in which the principal component analysis is only performed over two of the three modes is briefly outlined as well. The Miller & Nicely data on the confusion of English consonants are used to illustrate the programs TUCKALS3 and TUCKALS2 which incorporate the algorithms for the two models described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference notes

  • Carroll, J. D. & Chang, J. J.IDIOSCAL: A generalization of INDSCAL allowing IDIOsyncratic reference systems as well as an analytic approximation to INDSCAL. Paper presented at the Spring Meeting of the Psychometric Society, Princeton, N. J., March 1972.

  • Harshman, R. A.Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimode factor analysis (Working Papers in Phonetics No. 16). Los Angeles: University of California, 1970.

    Google Scholar 

  • Jennrich, R.A generalization of the multidimensional scaling model of Carroll & Chang (Working Papers in Phonetics No. 22). Los Angeles: University of California, 1972.

    Google Scholar 

  • Kroonenberg, P. M. & de Leeuw, J.TUCKALS2: A principal component analysis of three mode data (Res. Bull. RB 001-77). Leiden: Department of Data Theory, University of Leiden, 1977.

    Google Scholar 

  • Levin, J.Three-mode factor analysis (Unpublished doctoral thesis). Urbana, Ill.: University of Illinois, 1963.

    Google Scholar 

  • Wish, M.An INDSCAL analysis of the Miller & Nicely consonant confusion data. Paper presented at meetings of the Acoustical Society of America. Houston, November, 1970.

References

  • Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 283–320.

    Google Scholar 

  • Carroll, J. D. & Wish, M. Models and methods for three-way multidimensional scaling. In D. H. Krantz, R. D. Luce, R. C. Atkinson, & P. Suppes (Eds.),Contemporary developments in mathematical psychology (Vol. II). San Francisco: W. H. Freeman, 1974.

    Google Scholar 

  • d'Esopo, D. A. A convex programming procedure.Naval Research Logistics Quarterly, 1959,11, 33–42.

    Google Scholar 

  • Hubert, L. J. & Baker, F. B. Evaluating the symmetry of a proximity matrix.Quality & Quantity, 1979,13, 77–84.

    Google Scholar 

  • Israelsson, A. Three-way (or second order) component analysis. In H. Wold & E. Lyttkens (Eds.), Nonlinear iterative partial least-squares (NIPALS) estimation procedures.Bulletin of the International Statistical Institute, 1969,43, 29–51.

    Google Scholar 

  • Meyer, R. R. The validity of a family of optimization methods.SIAM Journal of Control and Optimization, 1970,15, 699–715.

    Google Scholar 

  • Miller, G. A. & Nicely, P. E. An analysis of perceptual confusion among some English consonants.Journal of the Acoustical Society of America, 1955,27, 338–352.

    Google Scholar 

  • Osgood, C. E., Suci, G. J. & Tannenbaum, T. H.The measurement of meaning. Urbana, Ill.: University of Illinois Press, 1957.

    Google Scholar 

  • Ostrowski, A. M.Solution of equations and systems of equations. New York: Academic Press, 1966.

    Google Scholar 

  • Penrose, R. On the best approximate solutions of linear matrix equations.Proceedings of the Cambridge Philosophical Society, 1955,51, 406–413.

    Google Scholar 

  • Rutishauser, H. Computational aspects of F. L. Bauer's simultaneous iteration method.Numerische Mathematik, 1969,13, 4–13.

    Google Scholar 

  • Sands, R. & Young, F. W. Component models for three-way data: ALSCOMP3, an alternating least squares algorithm with optimal scaling features.Psychometrika, 1980,45, 39–67.

    Google Scholar 

  • Schwartz, H. R., Rutishauser, H. & Stiefel, E.Numerik. Symmetrischer matrizen. Stuttgart: Teubner, 1968.

    Google Scholar 

  • Shepard, R. N. Psychological representation of speech sounds. In E. E. David & P. B. Denes (Eds.),Human communication. A unified view. New York: McGraw Hill, 1972.

    Google Scholar 

  • Shepard, R. N. Representation of structure in similarity data: Problems and prospects.Psychometrika, 1974,39, 373–421.

    Google Scholar 

  • Smith, P. T. Feature-testing models and their application to perception and memory for speech.Quarterly Journal of Experimental Psychology, 1973,25, 511–534.

    Google Scholar 

  • Smith, P. T. & Jones, K. F. Some hierarchical scaling methods for confusion matrix analysis II. Application to large matrices.British Journal of Mathematical and Statistical Psychology, 1975,28, 30–45.

    Google Scholar 

  • Soli, S. D. & Arabie, P. Auditory versus phonetic accounts of observed confusions between consonant phonemes.Journal of the Acoustical Society of America, 1979,66, 46–59.

    Google Scholar 

  • Takane, Y., Young, F. W. & de Leeuw, J. Non-metric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 1977,42, 7–67.

    Google Scholar 

  • Tucker, L. R. Implications of factor analysis of three-way matrices for measurement of change. In C. W. Harris (Ed.),Problems in measuring change. Madison, Wis.: University of Wisconsin Press, 1963.

    Google Scholar 

  • Tucker, L. R. The extension of factor analysis to three-dimensional matrices. In H. Gulliksen & N. Frederiksen (Eds.),Contributions to mathematical psychology. New York: Holt, Rinehardt & Winston, 1964.

    Google Scholar 

  • Tucker, L. R. Some mathematical notes on three-mode factor analysis.Psychometrika, 1966,31, 279–311.

    Google Scholar 

  • Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis.Psychometrika, 1972,37, 3–27.

    Google Scholar 

  • Tucker, L. R. & Messick, S. An individual difference model for multidimensional scaling.Psychometrika, 1963,28, 333–367.

    Google Scholar 

  • Wainer, H., Gruvaeus, G. & Blair, M. TREBIG: A 360/75 FORTRAN program for three-mode factor analysis for big data sets.Behavioral Research Methods and Instrumentation, 1974,6, 53–54.

    Google Scholar 

  • Wainer, H., Gruvaeus, G. & Snijder, F. TREMOD: A 360/75 program for three-mode factor analysis.Behavioral Science, 1971,16, 421–422.

    Google Scholar 

  • Walsh, J. A. An IBM 709 program for factor analyzing three-mode matrices.Educational and Psychological Measurement, 1964,24, 669–773.

    Google Scholar 

  • Walsh, J. A. & Walsh, R. A revised Fortran program for three-mode factor analysis.Educational and Psychological Measurement, 1976,36, 169–170.

    Google Scholar 

  • Young, F. W., de Leeuw, J. & Takane, Y. Quantifying qualitative data. In E. D. Lantermann & H. Feger (Eds.),Similarity and choice. Bern: Huber, 1980 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroonenberg, P.M., de Leeuw, J. Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 69–97 (1980). https://doi.org/10.1007/BF02293599

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293599

Key words

Navigation