Abstract
A model calculation is presented for investigating the domain between the two well-examined fields of color vision in the bee, i.e. choice behavior with respect to color stimuli, and photoreceptor physiology. Based on the properties of the receptors, the model explains quantitatively the results obtained in color discrimination experiments. The model predicts curved lines which connect the loci of most similar color stimuli in the receptor plane and makes quantitative predictions about the magnitude of the Bezold-Abney hue shift. A measure for color difference is derived from the number of the just-noticeabledifference (jnd) steps determined by the noise thresholds of the photoreceptor cells.
Similar content being viewed by others
References
Abney W de W (1910) On the change of hue of spectrum colours by dilution with white light. Proc R Soc A 83:120
Autrum H, Zwehl V v (1964) Spektrale empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384
Backhaus W, Menzel R (1984) Bestimmung der Farbwahrnehmungskomponenten bei Bienen durch multidimensionale Skalierung. Verh Dtsch Zool Ges 77:230
Bezold W v (1873) Über das Gesetz der Farbenmischung und die physiologischen Grundfarben. Ann Phys Chem 150:71–93 221–247
Bouma PJ (1951) Farbe und Farbwahrnehmung. Philips, Endhoven
Cornsweet TN (1970) Visual perception. Academic Press, New York
Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478
Frisch K v (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238
Graßmann H (1853) Zur Theorie der Farbenmischung. Ann Phys Chem 89:69–84
Helmholtz H v (1896) Handbuch der physiologischen Optik, 2. Aufl. Voß, Hamburg
Helversen O v (1972a) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80: 439–472
Helversen O v (1972b) The relaitonship between difference in stimuli and choice frequency in training experiments with the honeybee. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 323–334
Henderson S T (1977) Daylight and its spectrum. Hilger, Bristol
Indow T, Kanazawa K (1960) Multidimensional mapping of Munsell colors varying in hue, chroma, and value. J Exp Psychol 59:330–336
Labhart T (1974) Behavioral analysis of light intensity discrimination and spectral sensitivity in the honey bee, Apis mellifera. J Comp Physiol 95:203–216
Laughlin S (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Invertebrate visual centers and behavior I. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6B), pp 133–280
Lieke E (1986) Honeybees have a perceptual dimension of color saturation. J Comp Physiol (in press)
Lipetz L E (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein WR (ed) Principles of receptor physiology. Springer, Berlin Heidelberg New York, (Handbook of sensory physiology, vol I, pp 191–225)
MacAdam DL (1963) Nonlinear relations of psychometric scale values to chromaticity differences. J Opt Soc Am 53:754–757
Mazokhin-Porshnyakov GA (1962) Colorimetric index of trichromic bees. Biofizica 7:211–217
Menzel R (1967) Untersuchungen zum Erlernen von spektralfarben durch die Honigbiene, Apis mellifica. Z Vergl Physiol 56:22–62
Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Invertebrate photoreceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6A), pp 503–580
Menzel R (1985) Colour pathways and colour vision in the bee. In: Ottoson D, Zeki S (eds) Central and peripheral mechanisms of colour vision. Macmillan Press, London, pp 211–223
Menzel R, Blakers M (1976) Colour receptors in the bee eye-morphology and spectral sensitivity. J Comp Physiol 108:11–33
Menzel R, Ventura DF, Hertel H, de Souza JM, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J Comp Physiol A 158:165–177
Riemann B (1854) Quoted by DL MacAdam. In: Sources of color science. MIT Press p 61 (1970)
Richter M (1981) Einführung in die Farbmetrik, 2. Aufl. de Gruyter, Berlin
Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco
Rushton WAH (1972) Pigments and signals in colour vision. J Physiol 220:1–31
Schlecht P (1979) Colour discrimination in dim light: an analysis of the photoreceptor arrangement in the moth Deilephila. J Comp Physiol 129:257–267
Schrödinger E (1920a) Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Ann Phys 63:397–426; 427–456
Schrödinger E (1920b) Grundlinien einer Theorie der Farbenmetrik im Tagessehen: Der Farbenmetrik II. Teil: Höhere Farbenmetrik (eigentliche Metrik der Farbe). Ann Phys 63:481–520
Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135
Vos JJ, Walraven PL (1972) An analytical description of the line element in the zone-fluctuation model of colour vision. I, II. Vision Res 12:1327–1344, 1345–1365
Werner A, Menzel R (1984) Farbuntersheidung und Rezeptorfarbraum der Honigbiene. Verh Dtsch Zool Ges Fischer, Stuttgart, p 229
Wright WD, Pitt FHG (1934) Hue discrimination in normal color vision. Proc Phys Soc 46:459
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Backhaus, W., Menzel, R. Color distance derived from a receptor model of color vision in the honeybee. Biol. Cybernetics 55, 321–331 (1987). https://doi.org/10.1007/BF02281978
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02281978