Skip to main content
Log in

Measurement of growth and resorption of bone in rats fed meat diet

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Different coloured, fluorescent bone-seeking chemicals, viz., tetracycline, Alizarin Red S, and DCAF, have been administered sequentially to weanling rats and the rate of formation and resorption of bone measured from hard-ground cross sections of the upper third of the diaphysis of the femur. On a meat diet, bodily growth is significantly restricted for the first week and then recovery occurs. While bones grow they fail to mineralize normally and rapidly become fragile and rarefied. Resorption of bone is at first slow, then accelerates for a period of 2–3 weeks to about 15μ/day and then slows again. While the rate of bone formation is reduced relative to normal bone, resorption proceeds at approximately two to three times the rate of bone growth. Microradiographic studies confirm tht while resorption occurs on the endosteal margin and formation proceeds on the periosteal aspect of meat fed Ca-deficient rats, new bone is less calcified than that in control animals.

Résumé

Divers agents chimiques, colorés, fluorescents et se localisant dans les os, à savoir la tétracycline, l'alazazine rouge S et le DCAF, ont été administré en série à des rats sevrés et on a mesuré le taux de la formation et de la résorption osseuse sur les coupes transversales du tiers supérieur de la diaphyse. Ici la formation osseuse périostale s'effectue progressivement avec peu de changement endostéal. Avec alimentation carnée, la croissance des rats est significativement restreinte pendant la première semaine, mais se rétablit ensuite. Bien qu'il y ait croissance des os, ceux-ci ne se minéralisent pas normalement et ils deviennent rapidement fragiles et amincis. La résorption osseuse est lente d'abord, puis s'accelère pendant 2–3 semaines pour atteindre un taux de 15μ par jour, après quoi elle se ralentit de nouveau. Bien que le taux de formation osseuse soit réduit, en comparaison avec celui des os normaux, la résorption s'effectue environ deux à trois fois plus rapidement que la croissance osseuse. Des études microradiographiques sur des rats à régime carné mais carencés en calcium ont permis la constatation suivante: tandis que la résorption s'effectue à la marge endostéale et que la formation osseuse a lieu sur l'aspect périostéal, la matière osseuse nouvellement formée est moins calcifiéc que chez les témoins.

Zusammenfassung

Einige farbige, fluoreszierende, knochensuchende Chemikalien, z. B. Tetracyclin, Alazarin-Rot S und CDAF, wurden nacheinander an entwöhnten Ratten verabreicht, worauf man die Knochenbildungs- und Knochenresorptionswerte an hartgeschliffenen Schnitten des oberen Drittels der Diaphyse gemessen hat. Hier findet fortschreitend periostale Knochenbildung statt, mit geringer Veränderung des Endosteums. Bei Fleischdiät wird das Körperwachstum während der ersten Woche erheblich beschränkt; danach aber normalisiert es sich wieder. Obwohl die Knochen noch wachsen, zeigen sie keine normale Mineralisierung und werden schnell zerbrechlich und dünn. Die Knochenresorption ist anfangs langsam, dann beschleunigt sie sich während einer Zeitspanne von 2–3 Wochen bis auf 15 μ pro Tag, um sich dann wieder zu verlangsamen. Während die Knochenbildungsgeschwindigkeit relativ zum Normalwert heruntergesetzt wird, verläuft die Resorption ungefähr 2–3mal so schnell wie die Knochenbildung. Mikroradiographische Untersuchungen an mit Fleisch ernährten Ca-armen Ratten haben bestätigt, daß während die Resorption am Endosteumrande stattfindet und sich die Knochenbildung an der Periostenfläche fortsetzt, die neugebildete Knochensubstanz weniger kalzifiziert ist, als die der Kontrolltiere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amprino, R., Marotti, G.: A topographic quantative study of bone formation and reconstruction. In: Bone and tooth, ed. H. J. J. Blackwood, p. 21–33. Oxford: Pergamon Press 1964.

    Google Scholar 

  2. Arnold, J. S., Jee, W. S. S.: Bone growth and osteoclastic activity as indicated by radio-autographic distribution of plutonium. Amer. J. Anat.101, 367–418 (1957).

    Google Scholar 

  3. Bauer, G. C. H., Carlsson, A., Lindquist, B.: Accretion rate of bone salt in osteoporosis studied by means of P32. Acta med. scand.158, 139–142 (1957).

    Google Scholar 

  4. Belanger, L. F., Robichon, J., Migicovsky, B. B., Copp, D. H., Vincent, J.: Resorption without osteoclasts (osteolysis). In: Mechanisms of hard tissue destruction, ed. R. F. Sognnaes, p. 531–556. Washington: Amer. Ass. Adv. Science 1963.

    Google Scholar 

  5. Belchier, J.: An account of the bones of animals being changed to a red colour by ailment only. Phil. Trans.34, 287–299 (1736).

    Google Scholar 

  6. Bohr, H.: Chemical analyses and microradiographic investigations on bone biopsies from cases of osteoporosis and osteomalacia as compared with normal. Part. II. Microradiographic studies in normal, osteoporotic and osteomalacic bone. In: Bone and tooth, ed. H. J. J. Blackwood, p. 405–409. Oxford: Pergamon Press 1964.

    Google Scholar 

  7. Brash, J. C.: The growth of the alveolar bone and its relation to the movements of the teeth, including eruption. Dent. Rec.46, 641–664 (1926).

    Google Scholar 

  8. Copp, D. H., Sucker, A. P.: Study of calcium kinetics in calcium — and phosphorusdeficient rats with the aid of radiocalcium. In: Radioisotopes and bone, ed. P. Lacroix and A. M. Budy, p. 1–15. Oxford: Blackwell 1962.

    Google Scholar 

  9. Crawford, J., Gribetz, D., Diner, W. C., Hurst, P., Castleman, B.: The influence of vitamin D on parathyroid activity and the metabolism of calcium and citrate during calcium deprivation. Endocrinology61, 59–71 (1957).

    Google Scholar 

  10. Dollerup, E.: Chemical analyses and microradiographic investigations on bone biopsies from cases of osteoporosis and osteomalacia as compared with normal. Part I. Calcium, phosphorus and nitrogen content of normal and osteoporotic human bone. In: Bone and tooth, ed. H. J. J. Blackwood, p. 399–404. Oxford: Pergamon Press 1964.

    Google Scholar 

  11. Fell, H. B.: Some factors in the regulation of cell physiology in skeletal tissues. In: Bone biodynamics, ed. H. M. Frost, p. 189–207. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  12. Fiske, C. H., Subbarow, Y.: The colorimetric determination of phosphorus. J. biol. Chem.66, 375–400 (1925).

    Google Scholar 

  13. Fullmer, H. M., Link, C. C., Jr., Baer, M. J.: A stain for bone—illustrating apposition and absorption in two colours. Stain Technol.39, 71–73 (1964).

    Google Scholar 

  14. Goldhaber, P.: Behaviour of bone in tissue culture. In: Calcification in biological systems, ed. R. F. Sognnaes, p. 349–372. Washington: Amer. Ass. Adv. Science 1960.

    Google Scholar 

  15. Hancox, N.: The osteoclast. In: The biochemistry and physiology of bone, ed. G. H. Bourne, p. 213–250. New York-London: Academic Press 1956.

    Google Scholar 

  16. Harrison, G. E.: Estimation of strontium in biological materials by means of a flame spectrophotometer. Nature (Lond.)182, 792–793 (1958).

    Google Scholar 

  17. Harrison, M., Fraser, R.: Bone metabolism in rats, studied with stable strontium. J. Endocr.21, 191–205 (1960).

    Google Scholar 

  18. Heaney, R. P.: Interpretation of calcium kinetic data. In: Dynamic studies of metabolic bone disease, eds. O. H. Pearson and G. F. Joplin, p. 11–23. Oxford: Blackwell 1964.

    Google Scholar 

  19. Howship, J.: Experiments and observations in order to ascertain the means employed by animal economy in the formation of bone. Med. chir. Trans.6, 263–295 (1815).

    Google Scholar 

  20. Hunter, J. (1798): Experiments and observations on the growth of bones: In Hunter's works (D. F. Palmer's Edition), p. 315. London: Longman's 1837.

    Google Scholar 

  21. Johnson, L. C.: Morphologic analysis in pathology: the kinetics of disease and general biology of bone. In: Bone biodynamics, ed. H. M. Frost, p. 543–654. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  22. Jowsey, J., Sissons, H. A., Vaughan, J.: The site of deposition of Y91 in the bones of rabbits and dogs. J. nucl. Energy2, 168–176 (1956).

    Google Scholar 

  23. —: Age changes in human bone. Clin. Orthop.17, 210–218 (1960).

    Google Scholar 

  24. —: Microradiography of bone resorption. In: Mechanisms of hard tissue destruction, ed. R. F. Sognnaes, p. 447–469. Washington: Amer. Ass. Adv. Science 1963.

    Google Scholar 

  25. —, Raisz, L. G.: Experimental osteoporosis and parathyroid activity. Endocrinology82, 384–396 (1968).

    Google Scholar 

  26. Klein, L., Lafferty, F. W., Pearson, O. H., Curtiss, P. H., Jr.: Correlation of urinary hydroxyproline, serumalkline phosphatase and skeletal calcium turnover. Metabolism13, 272–284, 1964.

    Google Scholar 

  27. Kölliker, A. von: Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. Leipzig: F. C. W. Vogel 1873.

    Google Scholar 

  28. Leblond, C. P., Wilkinson, G. W., Belanger, L. F., Robichon, J.: Radio-autographic visualization of bone formation in the rat. Amer. J. Anat.,86, 289–341, (1950).

    Google Scholar 

  29. Milch, R. A., Rall, D. P., Tobie, J. E.: Bone localization of the tetracyclines. J. nat. Cancer Inst.19, 87–93 (1957).

    Google Scholar 

  30. Nordin, B. E. C.: The application of basic science to osteoporosis. In: Bone biodynamics, ed. H. M. Frost, p. 521–542. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  31. Rowland, R. E.: Resorption and bone physiology. In: Bone biodynamics, ed. H. M. Frost, p. 335–351. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  32. Scott, P. P., Greaves, J. P., Scott, M. G.: Nutrition of the cat. 4. Calcium and iodine deficiency on a meat diet. Brit. J. Nutr.15, 35–51 (1961).

    Google Scholar 

  33. Storey, E.: Bone changes associated with cortisone administration in the rat. Effect of variations in dietary calcium and phosphorus. Brit. J. exp. Path.41, 207–213 (1960).

    Google Scholar 

  34. —: Cortisone-induced bone resorption in the rabbit. Endocrinology68, 533–542, (1961).

    Google Scholar 

  35. Suzuki, H. K., Mathews, A.: Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-Bis[N,N′-di-(Carbomethyl) aminomethyl]fluorescein. Stain Technol.41, 57–60 (1966).

    Google Scholar 

  36. Urist, M. R., Deutsch, N. M.: Effects of cortisone upon blood, adrenal cortex, gonads, and the development of osteoporosis in birds. Endocrinology66, 805–818 (1960).

    Google Scholar 

  37. Sluys Veer, J., van de, Smeenk, D., Heul, R. O., van der: Tetracycline labelling of bone in hyperparathyroidism. In: Bone and tooth, ed. H. J. J. Blackwood, p. 85–91. Oxford: Pergamon Press 1964.

    Google Scholar 

  38. Williamson, M., Vaughan, J.: A preliminary report on the sites of deposition of Y, Am and Pu in cortical bone and in the region of the epiphyseal cartilage plate. In: Bone and tooth, ed. H. J. J. Blackwood, p. 71–83. Oxford: Pergamon Press 1964.

    Google Scholar 

  39. Young, R. W.: Histophysical studies on bone cells and bone resorption. In: Mechanisms of hard tissue destruction, ed. R. F. Sognnaes, p. 471–496. Washington: Amer. Ass. Adv. Science 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, R.H., Storey, E. Measurement of growth and resorption of bone in rats fed meat diet. Calc. Tis Res. 4, 291–304 (1969). https://doi.org/10.1007/BF02279132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02279132

Key words

Navigation