Skip to main content
Log in

On the analytic continuation of rank one eisenstein series

  • Published:
Geometric & Functional Analysis GAFA Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Borel, Stable real cohomology of arithmetic groups, Annales Scient. Éc. Norm. Sup. 4e série 7 (1974), 235–275.

    Google Scholar 

  2. Y. Colin de Verdiére, Une nouvelle démonstration du prolongement méromorphe de séries d'Eisenstein, C.R. Acad. Sc. Paris 293 (1981), 361–363.

    Google Scholar 

  3. H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geometry 17 (1982), 239–253.

    Google Scholar 

  4. L.D. Faddejev, Expansion in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Lobacecskii plane, Trudy Mosc. Mat. Obsc. 17 (1967), 323–350.

    Google Scholar 

  5. L. Guillopé, Théorie spectrale de quelques variétés à bouts, Annales Scient. Éc. Norm. Sup. 4e série 22 (1989), 137–160.

    Google Scholar 

  6. Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Springer Lecture Notes in Math. 62, 1968, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  7. D.A. Hejhal, The Selberg Trace Formula for PSL (2, ℝ), vol. II, Springer Lecture Notes Math. 1001, 1983, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  8. F. Hirzebruch, Hilbert modular surfaces, L'Enseignement Math. 19 (1973), 183–281.

    Google Scholar 

  9. P. Lax, R. Phillips, Scattering Theory for Automorphic Functions, Annals of Math. Studies 87, Princeton University Press, 1976.

  10. W. Müller, Spectral theory for Riemannian manifolds with cusps and a related trace formula, Math. Nachr. 111 (1983), 197–288.

    Google Scholar 

  11. W. Müller, Manifolds with Cusps of Rank One, Springer Lecture Notes Math. 1244, 1987, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  12. M.S. Osborne, G. Warner, The Theory of Eisenstein Systems, Academic Press, New York, 1981.

    Google Scholar 

  13. A. Selberg, Harmonic analysis, in “Collected Papers”, Vol. I, 626–674, Springer, Berlin-Heidelberg-New York, 1989.

    Google Scholar 

  14. A. Selberg, Discontinuous groups and harmonic analysis, Proc. Int. Cong. Math. (1962), 177–189.

  15. S. Steinberg, Meromorphic families of compact operators, Arch. Rat. Mech. Anal. 31 (1968), 372–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W. On the analytic continuation of rank one eisenstein series. Geometric and Functional Analysis 6, 572–586 (1996). https://doi.org/10.1007/BF02249264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02249264

Keywords