Skip to main content
Log in

The biallelica mating type locus ofUstilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Thea mating type locus ofUstilago maydis contains the structural genes for a pheromone-based cell recognition system that governs fusion of haploid cells. The locus exists in two alleles, termeda1 anda2. We have completed the analysis of the nucleotide sequences unique toa1 anda2. Within these dissimilar regions we find two short patches of DNA sequence similarity. Interestingly, one of these segments corresponds to the transcribed region of thea1 pheromone precursor. As a result of multiple nucleotide exchanges this sequence does not code for a functional product. The existence of a second pheromone gene in thea2 allele suggests that the present locus had a multiallelic ancestor. In addition, we describe the presence of two additional genes in thea2 allele. We have investigated the role of these genes during mating and pathogenic development and speculate that they might affect mitochondrial inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akada R, Minomi K, Kai J, Yamashita I, Miyakawa T, Fukui S (1989) Multiple genes coding for precursors of rhodotorucineA, a farnesyl peptide mating pheromone of the basidiomycetous yeastRhodosporidium toruloides. Mol Cell Biol 9:3491–3498

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  Google Scholar 

  • Armbrust EV, Ferris PJ, Goodenough UW (1993) A mating type-linked gene cluster expressed inChlamydomonas zygotes participates in the uniparental inheritance of the chloroplast genome. Cell 74:801–811

    Article  PubMed  Google Scholar 

  • Banuett F (1992)Ustilago maydis, the delightful blight. Trends Genet 8:174–180

    PubMed  Google Scholar 

  • Banuett F, Herskowitz I (1989) Differenta alleles ofUstilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86:5878–5882

    Google Scholar 

  • Banuett F, Herskowitz I (1994) Morphological transitions in the life cycle ofUstilago maydis and their genetic control by thea andb loci. Exp Mycology 18:247–266

    Article  Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) Thea mating-type locus ofUstilago maydis specifies cell signalling components. Cell 68:441–450

    Article  PubMed  Google Scholar 

  • Froeliger EH, Leong SA (1991) Thea mating-type alleles ofUstilago maydis are idiomorphs. Gene 100:113–122

    Article  PubMed  Google Scholar 

  • Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R (1992) A two-component system for self/non-self recognition inUstilago maydis. Cell 68:647–657

    Article  PubMed  Google Scholar 

  • Glomset JA, Gelb MH, Farnsworth CC (1990) Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15:139–142

    Article  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation ofEscherichia coli. Gene 57:267–272

    Article  PubMed  Google Scholar 

  • Holliday R (1974)Ustilago maydis. In: King RC (ed) Handbook of genetics, vol 1. Plenum, New York, pp 575–595

    Google Scholar 

  • Hurst LD, Hamilton WD (1992) Cytoplasmic fusion and the nature of sexes. Proc R Soc Lond B 247:189–194

    Google Scholar 

  • Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins inUstilago maydis. Cell 81:73–83

    Article  PubMed  Google Scholar 

  • Keon JPR, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen,Ustilago maydis. Curr Genet 19:475–481

    PubMed  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194

    PubMed  Google Scholar 

  • MacKay VL, Welch SK, Insley MY, Manney TR, Holly J, Saari GC, Parker ML (1988) TheSaccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc Natl Acad Sci USA 85:55–59

    PubMed  Google Scholar 

  • Moore TDE, Edman JC (1993) Thea-mating type locus ofCryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13:1962–1970

    PubMed  Google Scholar 

  • Nag DK, Huang HV, Berg DE (1988) Bidirectional chain termination nucleotide sequencing: transposon Tn5seq1 as a mobile source of primer sites. Gene 64:135–145

    Article  PubMed  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W, Martin T, Herskowitz I, Kahmann R (1990) Theb alleles ofU. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295–306

    Article  PubMed  Google Scholar 

  • Snetselaar KM (1993) Microscopic observation ofUstilago maydis mating interactions. Exp Mycology 17:345–355

    Article  Google Scholar 

  • Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth inUstilago maydis. EMBO J 13:1620–1627

    PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Timberlake WE (1986) Isolation of stage- and cell-specific genes from fungi. In: Bailey J (ed) Biology and molecular biology of plant-pathogen interactions. NATO ASI Series, vol. H1. Springer-Verlag, Berlin Heidelberg, pp 343–357

    Google Scholar 

  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Isolation and characterization of an autonomously replicating sequence fromUstilago maydis. Mol Cell Biol 8:3703–3709

    PubMed  Google Scholar 

  • Vögele K, Schwartz E, Weiz C, Schilz E, Rak B (1991) High-level ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res 19:4377–4385

    PubMed  Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Gene transfer system for the phytopathogenic fungusUstilago maydis. Proc Natl Acad Sci USA 85:865–869

    PubMed  Google Scholar 

  • Wendland J, Vaillancourt LJ, Hegner J, Lengeler KB, Laddison KJ, Specht CA, Raper CA, Kothe E (1995) The mating-type locusBa1 ofSchizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J 14:5271–5278

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, M., Kahmann, R. & Bölker, M. The biallelica mating type locus ofUstilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Molec. Gen. Genet. 250, 414–420 (1996). https://doi.org/10.1007/BF02174029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174029

Key words

Navigation