Skip to main content
Log in

Permeability transition pore of the inner mitochondrial membrane can operate in two open states with different selectivities

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Prooxidants induce release of Ca2+ from mitochondria through the giant solute pore in the mitochondrial inner membrane. However, under appropriate conditions prooxidants can induce Ca2+ release without inducing a nonspecific permeability change. Prooxidant-induced release of Ca2+ isselective. Presumably, this is the result of the operation of a permeability pathway for H+ coupled to the reversal of the Ca2+ uniporter, the latter generating the selectivity. The solute pore and prooxidant-induced Ca2+-specific pathways exhibit common sensitivities to a set of inhibitors and activators. It is proposed that the pore can operate in two open states: (1) permeable to H+ only and (2) permeable to solutes of Mr<1500. Under some conditions, prooxidants induce the H+-selective state which, in turn, collapses the inner membrane potential and permits selective loss of Ca2+ via the Ca2+ uniporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crompton, M. (1990). InIntracellular Calcium Regulation (Bronner, F., ed.). Alan R. Liss, New York, pp. 183–209.

    Google Scholar 

  2. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258, C755-C786.

    PubMed  Google Scholar 

  3. Richter, C. (1993).FEBS Lett. 325, 104–107.

    Article  PubMed  Google Scholar 

  4. Nicotera, P., Bellomo, G., and Orrenius, S. (1992).Annu. Rev. Pharmacol. Toxicol. 32, 449–470.

    Article  PubMed  Google Scholar 

  5. Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L. (1993).J. Biol. Chem. 268, 13791–13798.

    PubMed  Google Scholar 

  6. Nazareth, W., Yafei, N., and Crompton, M. (1991).J. Mol. Cell. Cardiol. 23, 1351–1354.

    Article  PubMed  Google Scholar 

  7. Kass, G. E. N., Juedes, M. J., and Orrenius, S. (1992).Biochem. Pharmacol. 44, 1995–2003.

    Article  PubMed  Google Scholar 

  8. Duchen, M. R., McGuinness, O., Brown, L. A., and Crompton, M. (1993).Cardiovasc. Res. 27, 1790–1794.

    PubMed  Google Scholar 

  9. Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R. D., and Garlid, K. D. (1992).J. Biol. Chem. 267, 17983–17989.

    PubMed  Google Scholar 

  10. Haworth, R. A., and Hunter, D. R. (1979).Arch. Biochem. Biophys. 195, 460–467.

    Article  PubMed  Google Scholar 

  11. Hunter, D. R., Haworth, R. A., and Southard, J. H. (1976).J. Biol. Chem. 251, 5069–5077.

    PubMed  Google Scholar 

  12. Bernardi, P., Zoratti, M., and Azzone, G. F. (1992). InMechanics of Swelling: From Clays to Living Cells and Tissues (Karalis, T. K., ed.), Springer Verlag, Berlin, pp. 357–377.

    Google Scholar 

  13. Zoratti, M. and Szabo, I. (1991). InTrends in Biomembranes and Bioenergetics (Menon, J., ed.), Compilers International, Trivandrum, India, pp. 263–329.

    Google Scholar 

  14. Al-Nasser, I., and Crompton, M. (1986).Biochem. J. 239, 19–29.

    PubMed  Google Scholar 

  15. Szabo, I., De Pinto, V., and Zoratti, M. (1993).FEBS Lett. 330, 206–210.

    Article  PubMed  Google Scholar 

  16. Halestrap, A. P., and Davidson, A. M. (1990).Biochem. J. 268, 153–160.

    PubMed  Google Scholar 

  17. Novgorodov, S. A. Gudz, T. I., Milgrom, Y. M., and Brierley, G. P. (1992).J. Biol. Chem. 267, 16274–16282.

    PubMed  Google Scholar 

  18. Wingrove, D. E., and Gunter, T. E. (1986).J. Biol. Chem. 261, 15159–15165.

    PubMed  Google Scholar 

  19. Puskin, J. S., Gunter, T. E., Gunter, K. K., and Russell, P. R. (1976).Biochemistry 15, 3834–3842.

    Article  PubMed  Google Scholar 

  20. Rottenberg, H., and Marbach, M. (1990).FEBS Lett. 274, 65–68.

    PubMed  Google Scholar 

  21. Pfeiffer, D. R., Palmer, J. W., Beatrice, M. C., and Stiers, D. L. (1983). InThe Biochemistry of Metabolic Processes (Lenon, D. F. L., Stratman, F. W., and Zahlten, R. N., eds.), Elsevier/ North-Holland, New York, pp. 67–80.

    Google Scholar 

  22. Bernardi, P., and Azzone, G. F. (1982).FEBS Lett. 139, 13–16.

    Article  PubMed  Google Scholar 

  23. Bernardi, P., Puradisi, V., Pozzan, T., and Azzone, G. F. (1984).Biochemistry 23, 1645–1651.

    Article  PubMed  Google Scholar 

  24. Richter, C., and Kass, G. E. N. (1991).Chem.-Biol. Interact. 77, 1–23.

    Article  PubMed  Google Scholar 

  25. Fiskum, G., and Lehninger, A. L. (1979).J. Biol. Chem. 254, 6236–6239.

    PubMed  Google Scholar 

  26. Moore, G. A., Jewell, S. A., Bellomo, G., and Orrenius, S. (1983).FEBS Lett. 153, 289–292.

    Article  PubMed  Google Scholar 

  27. Schlegel, J., Schweizer, M., and Richter, C. (1992).Biochem. J. 285, 65–69.

    PubMed  Google Scholar 

  28. Richter, C., Theus, M., and Schlegel, J. (1990).Biochem. Pharmacol. 40, 779–782.

    Article  PubMed  Google Scholar 

  29. Baumhuter, S., and Richter, C. (1982).FEBS Lett. 148, 271–275.

    Article  PubMed  Google Scholar 

  30. Lehninger, A. L., Vercesi, A., and Bababunmi, E. A. (1978).Proc. Natl. Acad. Sci. USA 75, 1690–1694.

    PubMed  Google Scholar 

  31. Weis, M., Kass, G. E. N., Orrenius, S., and Moldeus, P. (1992).J. Biol. Chem. 267, 804–809.

    PubMed  Google Scholar 

  32. Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1982).J. Biol. Chem. 257, 7161–7171.

    PubMed  Google Scholar 

  33. Crompton, M., and Costi, A. (1990).Biochem. J. 266, 33–39.

    PubMed  Google Scholar 

  34. Broekemeier, K. M., Schmid, P. C., Dempsey, M. E., and Pfeiffer, D. R. (1991).J. Biol. Chem. 266, 20700–20708.

    PubMed  Google Scholar 

  35. Yafei, N., Belin, J., Smith, T., and Crompton, M. (1991).Biochem. Soc. Trans. 18, 884–885.

    Google Scholar 

  36. Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989).J. Biol. Chem. 264, 7826–7830.

    PubMed  Google Scholar 

  37. Gogvadze, V., Kass, G. E. N., Boyer, C. S., Zhukova, A., Kim, Yu., and Orrenius, S. (1992).Biochem. Biophys. Res. Commun. 185, 698–704.

    Article  PubMed  Google Scholar 

  38. Dawson, A. P., Selwyn, M. J., and Fulton, D. V. (1979).Nature 277, 484–486.

    Article  PubMed  Google Scholar 

  39. Crompton, M., Ellinger, H., and Costi, A. (1988).Biochem. J. 255, 357–360.

    PubMed  Google Scholar 

  40. Novgorodov, S. A., Gudz, T. I., Kushnareva, Yu. E., Roginsky, V. A., and Kudriashov, Yu. B. (1991).Biochim. Biophys. Acta 1058, 242–248.

    PubMed  Google Scholar 

  41. Novgorodov, S. A., Gudz, T. I., Kushnareva, Y. E., Eriksson, O., and Leikin, Yu. (1991).FEBS Lett. 295, 77–80.

    PubMed  Google Scholar 

  42. Hunter, D. R., and Haworth, R. A. (1979).Arch. Biochem. Biophys. 195, 453–459.

    Article  PubMed  Google Scholar 

  43. Petronili, V., Cola, C., and Bernardi, P. (1993).J. Biol. Chem. 268, 1011–1016.

    PubMed  Google Scholar 

  44. Goldston, T. P., Roos, I., and Crompton, M. (1987).Biochemistry 26, 246–254.

    Article  PubMed  Google Scholar 

  45. Nicholls, D. G. (1978).Biochem. J. 176, 463–474.

    PubMed  Google Scholar 

  46. Petronilli, V. Cola, C., Massari, S., Colonna, R., and Bernardi, P. (1993).J. Biol. Chem. 268, 21939–21945.

    PubMed  Google Scholar 

  47. Hagen, T., Joyal, J. L., Henke, W., and Aprille, J. R. (1993).Arch. Biochem. Biophys. 303, 195–207.

    PubMed  Google Scholar 

  48. Novgorodov, S. A., Gudz, T. I., and Pfeiffer, D. R. (1993).Biophys. J. 64 (Abstr. No. M-Pos 328), A79.

    Google Scholar 

  49. Kinnally, K. W., Zorov, D. B., Antonenko, Yu. N., Snyder, S. H., McEnery, M. W., and Tedeschi, H. (1993).Proc. Natl. Acad. Sci. USA 90, 1374–1378.

    PubMed  Google Scholar 

  50. Gudz, T. I., Novgorodov, S. A., and Pfeiffer, D. R. (1992).EBEC Short Rep. 7, 125.

    Google Scholar 

  51. Novgorodov, S. A., Gudz, T. I., Brierley, G. P., and Pfeiffer, D. R. (1994).Arch. Biochem. Biophys. 311, 219–228.

    Article  PubMed  Google Scholar 

  52. Hunter, D. R., and Haworth, R. A. (1979).Arch. Biochem. Biophys. 195, 453–459.

    Article  PubMed  Google Scholar 

  53. Novgorodov, S. A., Kultayeva, E. V., Yaguzhinsky, L. S., and Lemeshko, V. V. (1987).J. Bioenerg. Biomembr. 19, 191–202.

    PubMed  Google Scholar 

  54. Beavis, A. D. (1992).J. Bioenerg. Biomembr. 24, 77–90.

    Article  PubMed  Google Scholar 

  55. McEnery, M. W. (1993). InNew Perspectives in Mitochondrial Research, Padova, pp. 13–14.

  56. Altschuld, R. A., Hohl, Ch. M., Castillo, L. C., Carleb, A. A., Starling, R. C., and Brierley, G. P. (1992).Am. J. Physiol. 262, H1699-H1704.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novgorodov, S.A., Gudz, T.I. Permeability transition pore of the inner mitochondrial membrane can operate in two open states with different selectivities. J Bioenerg Biomembr 28, 139–146 (1996). https://doi.org/10.1007/BF02110644

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110644

Key words

Navigation