Skip to main content
Log in

A self-dual Yang-Mills hierarchy and its reductions to integrable systems in 1+1 and 2+1 dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The self-dual Yang-Mills equations play a central role in the study of integrable systems. In this paper we develop a formalism for deriving a four dimensional integrable hierarchy of commuting nonlinear flows containing the self-dual Yang-Mills flow as the first member. We show that upon appropriate reduction and suitable choice of gauge group it produces virtually all well known hierarchies of soliton equations in 1+1 and 2+1 dimensions and can be considered as a “universal” integrable hierarchy. Prototypical examples of reductions to classical soliton equations are presented and related issues such as recursion operators, symmetries, and conservation laws are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chodos, A., Hadjimichael, E., Tze, C. (eds.), Solitions in Nuclear and Elementary Particle Physics. Proc. of the Lewes Workshop. Singapore: World Scientific 1984

    Google Scholar 

  2. Ashtekar, A.: Radiative degrees of freedom of the gravitational field in exact general relativity. J. Math. Phys.22, 2885–2895 (1981)

    Google Scholar 

  3. Freed, David, S. Uhlenbeck, Karen, K.: Instantons and 4-manifolds. New York: Springer 1984

    Google Scholar 

  4. Chau, Ling Lie: Integrability properties of supersymmetric Yang-Mills fields and relations with other nonlinear systems. Proc. of the 13th Int. Coll. on Group Theoretical Methods in Physics, Zachary, W. W. (ed.), Singapore: World Scientific 1984

    Google Scholar 

  5. Beals, R., Coifman, R. R.: The D-Bar approach to Inverse Scattering and Nonlinear Evolutions. Physica18D, 242–249 (1986)

    Google Scholar 

  6. Bruschi, M., Levi, D., Ragnisco, O.: Nonlinear Partial Differential Equation and Bäcklund Transformations Related to the 4-Dimensional Self-Dual Yang-Mills Equation. Lett. Nuovo Cimento33, 263–266 (1982)

    Google Scholar 

  7. Ward, R. S.: Integrable and solvable systems and relations among them. Phil. Trans. Roy. Soc. Lond.A315, 451–457 (1985)

    Google Scholar 

  8. Atiyah, M. F.: Classical Geometry of Yang-Mills Fields. Fermi Lectures, Scuola Normale Pisa (1980)

  9. Belavin, A. A., Zakharov, V. E.: Yang-Mills equations as inverse scattering problem. Phys. Lett.73B, 53–57 (1978)

    Google Scholar 

  10. Atiyah, M. F., Ward, R. S.: Instantons and algebraic geometry. Commun. Math. Phys.55, 117–124 (1977)

    Google Scholar 

  11. Schur, I.: Über vertauschbare lineare Differentialausdrücke. Gesammelte AbhandlungenI, 170–176, Springer 1905

    Google Scholar 

  12. Mulase, M.: KP equations, strings and Schottky problem. In: Algebraic Analysis, Kashiwara, M., Kawai, T. (eds.),II, 473–492, New York: Academic Press 1988

    Google Scholar 

  13. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. Lect. Notes in Num. Appl. Anal.5 259–271 (1982)

    Google Scholar 

  14. Faddeev, L., Takhtajan, L.: Hamiltonian Methods in the Theory of Solitons. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  15. Mason, J., Sparling, G.: Twistor correspondence for the soliton hierarchies. J. Geom. and Phys.8, 243–271 (1992)

    Google Scholar 

  16. Prasad, M. K., Sinha, A., Chau-Wang, L. L.: Non-local continuity equation for self-dualSU(N) Yang-Mills fields. Phys. Lett.87B, 237–238 (1979)

    Google Scholar 

  17. Mason, J., Sparling, G.: Nonlinear Schrödinger and Korteweg-de Vries equations are reductions of self-dual Yang-Mills equations. Phys. Lett.137A 29–33 (1989)

    Google Scholar 

  18. Zakharov, V. E., Manakov, S. V.: The theory of resonant interaction of wave packets in nonlinear media. Sov. Phys. JETP Lett.18, 243–245 (1973)

    Google Scholar 

  19. Zakharov, V. E., NOvikov, S. P., Manakov, S. V. Pitaevsky, L. P.: Theory of Solitons: The Inverse Scattering Method. New York: Consultant Bureau 1984

    Google Scholar 

  20. Ablowitz, M. J., Segur, H.: Solitons and Inverse Scattering Transform. Philadelphia: SIAM 1981

    Google Scholar 

  21. Chakravarty, S., Ablowitz, M. J.: On reduction of self-dual Yang-Mills equations. In: Painleve Transcendents, Their Asymptotics and Physical Applications, Levi, D., Winternitz, P. (eds.) London, New York: Plenum 1992

    Google Scholar 

  22. McIntosh, I.: Soliton equations and connections with self-dual curvature. Preprint (1991)

  23. Zakharov, V. E., Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP34, 62–69 (1972)

    Google Scholar 

  24. Gelfand, I. M., Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Russ. Math. Surv.30:5, 77–113 (1975)

    Google Scholar 

  25. Adler, M.: On a trace functional for formal pseudodifferential operators and symplectic structure of the Korteweg-de Vries type equations. Invent. Math.50, 219–248 (1979)

    Google Scholar 

  26. Hermite, Ch.: Sur l'équation de Lamé. — Cours d'analyse de l'École Polytechn. Paris, 1872–1873, 32-e leçon; Oeuvres,III, 118–122, Paris 1912

  27. Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. H.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Commun. Pure Appl. Math.27, 97–133 (1974)

    Google Scholar 

  28. Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.53 249–315 (1974)

    Google Scholar 

  29. Ablowitz, M. J., Haberman, R.: Nonlinear evolution equations — two and three dimensions. Phys. Rev. Lett.35, 1185–1188 (1975)

    Google Scholar 

  30. Zakharov, V. E., Shabat, A. B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering, II. Func. Anal. Appl.13, 166–176 (1979)

    Google Scholar 

  31. Ablowitz, M. J., Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Notes Series,149, Cambridge: Cambridge University Press 1992

    Google Scholar 

  32. Fokas, A. S., Gel'fand, I. M.: Bi-Hamiltonian Structures and Integrability. Preprint, INS 188 (1992)

  33. Konopelchenko, B. G.: Nonlinear Integrable Equations: Recursion Operators, Group-Theoretical and Hamiltonian Structures of Soliton Equations. Lect. Notes in Physics,270, Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  34. Fokas, A. S., Santini, P. M.: Recursion operators and bi-Hamiltonian structures in multidimensions, II. Commun. Math. Phys.116, 449–474 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ablowitz, M.J., Chakravarty, S. & Takhtajan, L.A. A self-dual Yang-Mills hierarchy and its reductions to integrable systems in 1+1 and 2+1 dimensions. Commun.Math. Phys. 158, 289–314 (1993). https://doi.org/10.1007/BF02108076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108076

Keywords

Navigation