Skip to main content
Log in

Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

An example of a finite dimensional factorizable ribbon Hopf ℂ-algebra is given by a quotientH=u q (g) of the quantized universal enveloping algebraU q (g) at a root of unityq of odd degree. The mapping class groupM g,1 of a surface of genusg with one hole projectively acts by automorphisms in theH-moduleH *⊗g, ifH * is endowed with the coadjointH-module structure. There exists a projective representation of the mapping class groupM g,n of a surface of genusg withn holes labeled by finite dimensionalH-modulesX 1, ...,X n in the vector space Hom H (X 1 ⊗ ... ⊗X n ,H *⊗g). An invariant of closed oriented 3-manifolds is constructed. Modifications of these constructions for a class of ribbon Hopf algebras satisfying weaker conditions than factorizability (including most ofu q (g) at roots of unityq of even degree) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman, J.S.: Mapping class groups and their relationship to braid groups. Commun. Pure Appl. Math.22, 213–238 (1969)

    Google Scholar 

  2. Chandrasekharan, K.: Introduction to Analytic Number Theory. Berlin, Heidelberg: Springer, 1968

    Google Scholar 

  3. Crivelli, M., Felder, G., Wieczerkowski, C.: Topological Representations ofu q (sl 2(ℂ)) on the Torus and the Mapping Class Group. Lett. Math. Phys.30, 71–85 (1994)

    Google Scholar 

  4. Deligne, P.: Catégories tannakiennes. In: Grothendieck Festschrift,2, pp. 111–195. Birkhäuser 1991

  5. Drinfeld, V.G.: Quantum groups. In: Proceedings of the ICM,1, pp. 798–820. Providence, R.I.: Amer. Math. Soc. 1987

    Google Scholar 

  6. Drinfeld, V.G.: On almost cocommutative Hopf algebras. Leningrad Math. J.1, 321–342 (1990)

    Google Scholar 

  7. Fenn, R., Rourke, C.: On Kirby's calculus of links. Topology18, 1–15 (1979)

    Google Scholar 

  8. Freyd, P., Yetter, D.N.: Coherence theorems via knot theory. J. Pure Appl. Algebra78, 49–76 (1992)

    Google Scholar 

  9. Gaberdiel, M.: Fusion rules of chiral algebras. Nuclear Phys. B417, 130–150 (1994)

    Google Scholar 

  10. Hennings, M.A.: Invariants of links and 3-manifolds obtained from Hopf algebras. Preprint

  11. Jimbo, M.: Aq-difference analog ofU(g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)

    Google Scholar 

  12. Joyal, A., Street, R.: Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra71, 43–51 (1991)

    Google Scholar 

  13. Kauffman, L.H., Radford, D.E.: A necessary and sufficient condition for a finite dimensional Drinfeld double to be a ribbon Hopf algebra. J. Algebra159, 98–114 (1993)

    Google Scholar 

  14. Kauffman, L.H., Radford, D.E.: Invariants of 3-Manifolds Derived from Finite Dimensional Hopf Algebras. Preprint

  15. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, II. J. Amer. Math. Soc.6, 949 (1993)

    Google Scholar 

  16. Kerler, T.: Mapping Class Group Actions on Quatum Doubles. Commun. Math. Phys.168, 353–388 (1995)

    Google Scholar 

  17. Kirby, R.C.: A calculus for framed links inS 3. Invent. Math.45, 35–56 (1978)

    Google Scholar 

  18. Kirby, R.C.: The Topology of 4-Manifolds. Lecture Notes in Math.1374. New York: Springer, 1989

    Google Scholar 

  19. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin-Turaev forsl(2,ℂ). Invent. Math.105, 473–545 (1991)

    Google Scholar 

  20. Kirillov, A.N., Reshetikhin, N.:q-Weyl group and a multiplicative formula for universalR-matrices. Commun. Math. Phys.134, 421–431 (1990)

    Google Scholar 

  21. Khoroshkin, S.M., Tolstoy, V.N.: UniversalR-matrix for quantized (super)algebras. Commun. Math. Phys.141, 599–617 (1991)

    Google Scholar 

  22. Kohno, T.: Topological invariants for 3-manifolds using representations of mapping class groups I. Topology31, 203–230 (1992)

    Google Scholar 

  23. Kohno, T.: Three-manifold invariants derived from conformal field theory and projective representations of modular groups. Internat. J. Modern Phys. B6, 1795–1805 (1992)

    Google Scholar 

  24. Lang, S.: Algebraic number theory. Graduate Texts in Math.110. New York: Springer, 1986

    Google Scholar 

  25. Levendorskii, S.Z., Soibelman, Ya.S.: Some applications of the quantum Weyl groups. J. Geom. Physics7, 241–254 (1990)

    Google Scholar 

  26. Levendorskii, S.Z., Soibelman, Ya.S.: Quantum Weyl group and multiplicative formula for theR-matrix of a simple Lie algebra. Funct. Anal. Appl.25, 143–145 (1991)

    Google Scholar 

  27. Levendorskii, S., Soibelman, Ya.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori. Commun. Math. Phys.139, 141–170 (1991)

    Google Scholar 

  28. Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. of Math.76, 531–540 (1962)

    Google Scholar 

  29. Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Cambridge Philos. Soc.60, 769–778 (1964)

    Google Scholar 

  30. Lickorish, W.B.R.: Three-manifolds and the Temperley-Lieb algebra. Math. Ann.290, 657–670 (1991)

    Google Scholar 

  31. Lickorish, W.B.R.: Calculations with the Temperley-Lieb algebra. Comment. Math. Helv.67, 571–591 (1992)

    Google Scholar 

  32. Lickorish, W.B.R.: The skein method for three-manifold invariants. Preprint

  33. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata35, 89–113 (1990)

    Google Scholar 

  34. Lusztig, G.: Introduction to Quantum groups. Progress in Math.110, Boston: Birkhäuser, 1993

    Google Scholar 

  35. Lyubashenko, V.V.: Tensor categories and RCFT I,II. Preprint ITP-90-30E, ITP-90-59E, Kiev, 1990, unpublished

  36. Lyubashenko, V.V.: Tangles and Hopf algebras in braided categories. J. Pure Appl. Algebra98, 245–278 (1995)

    Google Scholar 

  37. Lyubashenko, V.V.: Modular transformations for tensor categories. J. Pure Appl. Algebra98, 279–327 (1995)

    Google Scholar 

  38. Lyubashenko, V.: Ribbon categories as modular categories. Preprint

  39. Lyubashenko, V.V., Majid, S.: Fourier transform identities in quantum mechanics and the quantum line. Phys. Lett.B 284, 66–70 (1992)

    Google Scholar 

  40. Lyubashenko, V.V., Majid, S.: Braided groups and quantum Fourier transform. J. Algebra166, 506–528 (1994)

    Google Scholar 

  41. Mac Lane, S.: Categories for the working mathematician. New York: Springer, 1971

    Google Scholar 

  42. Majid, S.: Braided groups. J. Pure Appl. Algebra86, 187–221 (1993)

    Google Scholar 

  43. Matveev, S., Polyak, M.: A geometrical presentation of the surface mapping class group and surgery. Commun. Math. Phys.160, 537–550 (1994)

    Google Scholar 

  44. Moore, G., Seiberg, N.: Classical and Quantum Conformal Field Theory. Commun. Math. Phys.123, 177–254 (1989)

    Google Scholar 

  45. Radford, D.E.: Minimal quasitriangular Hopf algebras. J. Algebra157, 285–315 (1993)

    Google Scholar 

  46. Radford, D.E.: The Trace Function and Hopf Algebras. J. Algebra163, 583–622 (1994)

    Google Scholar 

  47. Reidemeister, K.: Knotentheorie. Berlin: Springer, 1932

    Google Scholar 

  48. Reshetikhin, N.: Quasitriangular Hopf algebras, solutions to the Yang-Baxter equations and link invariants. Algebra i Analiz1, 169–194 (1989)

    Google Scholar 

  49. Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: QuantumR-matrices and factorization problems. J. Geom. Phys.5, 533 (1988)

    Google Scholar 

  50. Reshetikhin, N.Yu., Turaev, V.G.: Ribbon Graphs and Their Invariants Derived from Quantum Groups. Commun. Math. Phys.127, 1–26 (1990)

    Google Scholar 

  51. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)

    Google Scholar 

  52. Rolfsen, D.: Knots and Links. Math. Lect. Ser. 7. Berkeley: Publish or Perish, 1976

    Google Scholar 

  53. Rosso, M.: Quantum Groups at a Root of 1 and Tangle Invariants. Internat. J. Modern Phys. B7, 3715–3726 (1993)

    Google Scholar 

  54. Saavedra Rivano, N.: Catégories Tannakiennes. Lecture Notes in Math.265, Berlin, Heidelberg, New York: Springer, 1972

    Google Scholar 

  55. Schauenburg, P.: Tannaka Duality for Arbitrary Hopf Algebras. Algebra-Berichte66. München: R. Fisher, 1992

    Google Scholar 

  56. Scott, G.P.: Braid groups and the group of homeomorphisms of a surface. Proc. Cambridge Philos. Soc.68, 605–617 (1970)

    Google Scholar 

  57. Shum, M.C.: Tortile tensor categories. J. Pure Appl. Algebra93, 57–110 (1994)

    Google Scholar 

  58. Sweedler, M.E.: Hopf algebras. New York: Benjamin, 1969

    Google Scholar 

  59. Tanisaki, T.: Killing Forms, Harish-Chandra Isomorphisms, and UniversalR-Matrices for Quantum Algebras. Internat. J. Modern Phys. A7, 941–961 (1992)

    Google Scholar 

  60. Turaev, V.: Quantum invariants of knots and 3-manifolds. Berlin, New York: Walter de Gruyter, 1994

    Google Scholar 

  61. Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math.45, 157–174 (1983)

    Google Scholar 

  62. Walker, K.: On Witten's 3-manifold invariants. Preprint, February 1991

  63. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1989)

    Google Scholar 

  64. Yetter, D.N.: Coalgebras, Comodules, Coends and Reconstruction. Preprint

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Felder

This work was supported in part by the EPSRC research grant GR/G 42976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubashenko, V.V. Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity. Commun.Math. Phys. 172, 467–516 (1995). https://doi.org/10.1007/BF02101805

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101805

Keywords

Navigation