Skip to main content
Log in

Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For the two-dimensional Schrödinger equation

$$[ - \Delta + v(x)]\psi = E\psi , x \in \mathbb{R}^2 , E = E_{fixed} > 0 (*)$$

at a fixed positive energy with a fast decaying at infinity potentialv(x) dispersion relations on the scattering data are given. Under “small norm” assumption using these dispersion relations we give (without a complete proof of sufficiency) a characterization of scattering data for the potentials from the Schwartz classS=C (∞) (ℝ2). For the potentials with zero scattering amplitude at a fixed energyE fixed (transparent potentials) we give a complete proof of this characterization. As a consequence we construct a family (parametrized by a function of one variable) of two-dimensional spherically-symmetric real potentials from the Schwartz classS transparent at a given energy. For the two-dimensional case (without assumption that the potential is small) we show that there are no nonzero real exponentially decreasing, at infinity, potentials transparent at a fixed energy. For any dimension greater or equal to 1 we prove that there are no nonzero real potentials with zero forward scattering amplitude at an energy interval. We show that KdV-type equations in dimension 2+1 related with the scattering problem (*) (the Novikov-Veselov equations) do not preserve, in general, these dispersion relations starting from the second one. As a corollary these equations do not preserve, in general, the decay rate faster than |x|−3 for initial data from the Schwartz class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Manakov, S.V.: The inverse scattering method and two-dimensional evolution, equations. Uspekhi Mat. Nauk.31(5), 245–246 (1976) (in Russian)

    Google Scholar 

  2. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: The Schrödinger equation in a periodic field and Riemann surfaces. Dokl. Akad. Nauk. SSSR229, 15–18 (1976), translation in Sov. Math. Dokl.17, 947–951 (1976)

    Google Scholar 

  3. Veselov, A.P., Novikov, S.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolution equations. Dokl. Akad. Nauk. SSSR279, 20–24 (1984), translation in Sov. Math. Dokl.30 588–591 (1984)

    Google Scholar 

  4. Veselov, A.P., Novikov, S.P.: Finite-zone, two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk. SSSR279, 784–788 (1984), translation in Sov. Math. Dokl.30, 705–708 (1984)

    Google Scholar 

  5. Grinevich, P.G., Novikov, R.G.: Analogues of multisolition potentials for the two-dimensional Schrödinger operator. Funkt. Anal. i Pril.19(4), 32–42 (1985) translation in Funct. Anal. and Appl.19, 276–285 (1985)

    Google Scholar 

  6. Grinevich, P.G., Novikov, R.G.: Analogues of multisolition potentials for the two-dimesional Schrödinger equations and a nonlocal Riemann problem. Dokl. Akad. Nauk SSSR286, 19–22 (1986), translation in Sov. Math. Dokl.33, 9–12 (1986)

    Google Scholar 

  7. Novikov, R.G.: Construction of a two-dimensional Schrödinger operator with a given scattering amplitude at fixed energy. Teoret. Mat. Fiz.66, 234–240 (1986)

    Google Scholar 

  8. Grinevich, P.G., Manakov, S.V.: The inverse scattering problem for the two-dimensional Schrödinger operator, the\(\bar \partial \) and non-linear equations. Funkt. Anal. i Pril.20(2), 14–24 (1986), translation in Funkt. Anal. and Appl.20, 94–103 (1986)

    Google Scholar 

  9. Novikov, R.G.: Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy. Funkt. Anal. i Pril.20(3), 90–91 (1986), translation in Funkt. Anal. and Appl.20, 246–248 (1986)

    Google Scholar 

  10. Grinevich, P.G.: Rational solutions of the Veselov-Novikov equations-Two-dimensional potentials that are reflectionless for fixed energy. Teoret. Mat. Fiz.69(2), 307–310 (1986)

    Google Scholar 

  11. Grinevich, P.G., Novikov, S.P.: Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state. Funkt. Anal. i Pril.22(1), 23–33 (1988), translation in Funkt. Anal. and Appl.22, 19–27 (1988)

    Google Scholar 

  12. Novikov, R.G.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funkt. Anal.103, 409–463 (1992)

    Google Scholar 

  13. Françoise, J.-P., Novikov, R.G.: Solutions rationnelles des équations de type Korteweg-de Vries en dimension 2+1 et problèmes àm corps sur la droite. C.R. Acad. Sci. Paris314, Sér. I, 109–113 (1992)

    Google Scholar 

  14. Boiti, M., Leon, J., Manna, M., Pempinelli, F.: On a spectral transform of a KDV-like equation related to the Schrödinger operator in the plane. Inverse Problems3, 25–36 (1987)

    Google Scholar 

  15. Tsai, T.Y.: The Schrödinger operator in the plane. Dissertation, Yale University (1989)

  16. Calderon, A.P.: On an inverse boundary value problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Mathemàtica, Rio de Janeiro, 65–73 (1980)

  17. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements II. Interior results. Comm. Pure Appl. Math.38, 644–667 (1985)

    Google Scholar 

  18. Sylvester, J., Uhlmann G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math.39, 91–112 (1986)

    Google Scholar 

  19. Novikov, R.G.: Multidimensional inverse spectral problem for the equation −Δψ+(v(x)-Eu(x))ψ=0. Funkt. Anal. i Pril.22(4), 11–22 (1988), translation in Funct. Anal. and Appl.22, 263–272 (1988)

    Google Scholar 

  20. Sun, Z., Uhlmann, G.: Generic uniqueness for an inverse boundary value problem. Duke Math. J.62, 131–155 (1991)

    Google Scholar 

  21. Sun, Z., Uhlmann, G.: Recovery of singularities for formally determined inverse problems. Commun. Math. Phys.153, 431–445 (1993)

    Google Scholar 

  22. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Preprint (1993)

  23. Faddeev, L.D.: Inverse problem of quantum scattering theory II. Itogi Nauki i Tekhniki, Sov. Prob. Mat.3, 93–180 (1974), translation in J. Sov. Math.5, 334–396 (1976)

    Google Scholar 

  24. Novikov, R. G., Henkin, G. M.: The\(\bar \partial \) in the multidimensional inverse scattering problem. a) Preprint 27M, Institute of Physics, Krasnoyarsk (1986), (in Russian);

  25. Uspekhi Mat. Nauk.42(3), 93–152 (1987), translation in Russ. Math. Surv.42(4), 109–180 (1987)

    Google Scholar 

  26. Novikov, R.G.: Multidimensional inverse scattering problem for acoustic equation. Preprint 32M, Institute of Physics, Krasnojarsk, (1986) (in Russian)

    Google Scholar 

  27. Henkin, G.M., Novikov, R.G.: A multidimensional inverse problem in quantum and acoustic scattering. Inverse Problems4, 103–121 (1988)

    Google Scholar 

  28. Novikov, R.G.: The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys.161, 569–595 (1994)

    Google Scholar 

  29. Manakov, S.V.: The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev-Petviashvili equation. Physica D3(1,2), 420–427 (1981)

    Google Scholar 

  30. Ablowitz, M.J., Bar Yaacov, D., Fokas, A.S.: On the inverse scattering transform for the Kadomtsev-Petviashvili equation. Studies in Appl. Math.69, 135–143 (1983)

    Google Scholar 

  31. Zakharov, V.E.: Shock waves spreading along solitons on the surface of liquid. Izv. Vuzov Radiofiz.2969, 1073–1079 (1986)

    Google Scholar 

  32. Regge, T.: Introduction to complex orbital moments. Nuovo Cimento.14, 951–976 (1959)

    Google Scholar 

  33. Newton, R.G.: Construction of potentials from the phase shifts at fixed energy. J. Math. Phys.3, 75–82 (1962)

    Google Scholar 

  34. Sabatier, P.C.: Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy. J. Math. Phys.7, 1515–1531 (1966)

    Google Scholar 

  35. Vekua, I.N.: Generalized analytic functions. Oxford: Pergamon Press, 1962

    Google Scholar 

  36. Landau, L.D., Lifshitz, E.M.: Quantum mechanics: Non-relativistic theory. 2nd ed. Oxford: Pergamon Press, 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr G. Grinevich.

Additional information

Communicated by B. Simon

The main part of this work was fulfilled during the visit of one of the authors (P.G.G.) to the University of Nantes in June 1994. He is grateful to the University of Nantes for the invitation and the financial support of this visit. He was also supported by the Soros International Scientific foundation grant MD 8000 and by the Russian Foundation for Fundamental Studies grant 93-011-16087.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinevich, P.G., Novikov, R.G. Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials. Commun.Math. Phys. 174, 409–446 (1995). https://doi.org/10.1007/BF02099609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099609

Keywords

Navigation