Skip to main content
Log in

Optimal age and size at maturity in annuals and perennials with determinate growth

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

A model predicting optimal age and size at maturity is presented, exploring the conflict between growth and energy allocation to reproduction. According to the model, the factors promoting delayed maturity and large adult body size are as follows: (1) high rate of somatic growth, (2) high percentage increase in reproductive rate with body size increase, (3) long life expectancy at maturity for annuals or large number of expected productive days (when either growth or reproduction is possible) for perennials with growth ceasing at maturity, (4) life expectancy increasing with body size. All these factors are combined in the mathematical formula predicting optimal age and size at maturity, which allows for quantitative predictions. The optimal schedule of growth and reproduction may be achieved by natural selection, developmental plasticity, or when one species replaces another. Sexual size dimorphism is also discussed, resulting from different optimal age at maturity for either sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch, P., Gould, S. J., Oster, G. F. and Wake, D. B. (1979) Size and shape in ontogeny and phylogeny.Paleobiology 5, 296–313.

    Google Scholar 

  • Andrews, R. M. (1982) Patterns of growth in reptiles. InBiology of the Reptilia (C. Gans, ed.) pp. 273–320. Academic Press.

  • Bertram, B. C. R. (1975) Social factors influencing reproduction in wild lions.J. Zool. (Lond.)177, 463–82.

    Google Scholar 

  • Clutton-Brock, T. H., Guiness, F. E. and Albon, S. D. (1982) Red deer.Behavior and Ecology of Two Sexes. Edinburgh University Press, UK.

    Google Scholar 

  • Cohen, D. (1971) Maximizing final yield when growth is limited by time or by limiting resources.J. Theor. Biol. 33, 299–307.

    PubMed  Google Scholar 

  • Crandall, R. E. and Stearns, S. C. (1982) Variational models of life-histories: when do solutions exist?Theor. Pop. Biol. 21, 11–23.

    Google Scholar 

  • Eisenberg, J. F. (1981)The Mammalian Radiations. Univ. Chicago Press, Chicago, USA.

    Google Scholar 

  • Gilbert, J. J. and Williamson, C. E. (1983) Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera).Ann. Rev. Ecol. Syst. 14, 1–33.

    Google Scholar 

  • Gould, S. J. (1977)Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Harvey, P. H. and Zammuto, R. M. (1985) Patterns of mortality and age at first reproduction in natural populations of mammals.Nature 315, 319–20.

    PubMed  Google Scholar 

  • Hayssen, V. and Lacy, R. C. (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass.Comp. Biochem. Physiol. 81A, 741–54.

    Google Scholar 

  • Holmsgard, E. and Olsen, H. C. (1966) Experimental induction of flowering in beech.Forstl. Forsogsv. Danm. 30, 1–17.

    Google Scholar 

  • Howard, R. D. (1981) Sexual dimorphism in bullfrogs.Ecology 62, 303–10.

    Google Scholar 

  • Howard, R. D. (1983) Sexual selection and variation in reproductive success in a long-lived organism.Amer. Natur. 122, 301–25.

    Google Scholar 

  • King, D. and Roughgarden, J. (1982a) Multiple switches between vegetative and reproductive growth in annual plants.Theor. Pop. Biol. 21, 194–204.

    Google Scholar 

  • King, D. and Roughgarden, J. (1982b) Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length.Theor. Pop. Biol. 22, 1–16.

    Google Scholar 

  • Kozlowski, J. (1985) Optimization of age at maturity and its morphological consequences in mammals.Zesz. nauk. Filli UW 48, 1–9.

    Google Scholar 

  • Kozlowski, J. and Uchmanski, J. (1987) Optimal individual growth and reproduction in perennial species with indeterminate growth.Evol. Ecol.,1, 214–30.

    Google Scholar 

  • Kozlowski, J. and Wiegert, R. G. (1986) Optimal allocation of energy to growth and reproduction.Theor. Pop. Biol. 29, 16–37.

    Google Scholar 

  • Kozlowski, J. and Ziolko, M. Optimal allocation of energy to growth and reproduction when the maximum rate of reproductive growth is limited (submitted toTheor. Pop. Biol.).

  • Lavigne, D. M. (1982) Similarity in energy budgets of animal populations.J. Anim. Ecol. 51, 195–206.

    Google Scholar 

  • Lederhouse, R. C., Finke, M. D. and Scriber, J. M. (1982) The contributions of larval growth and pupal duration to protandry in the black swallowtail butterfly,Papilio polyxenes.Oecologia (Berl.)53, 296–300.

    Google Scholar 

  • Millar, J. S. and Zammuto, R. M. (1983) Life histories of mammals: an analysis of life tables.Ecology 64, 631–5.

    Google Scholar 

  • Minchella, D. J. and Loverde, P. T. (1981) A cost of increased early reproductive effort in the snailBiomphalaria globrata.Amer. Natur. 118, 871–81.

    Google Scholar 

  • Mirmirani, M. and Oster, G. (1978) Competition, kin selection, and evolutionary stable strategy.Theor. Pop. Biol. 13, 304–39.

    Google Scholar 

  • Mueller, H. C. and Meyer, K. (1985) The evolution of reversed sexual dimorphism in size: a comparative analysis of the Falconiformes of the Western Palearctic. InCurrent Ornithology Vol. 2 (R. F. Johnston, ed.) pp. 65–101.

    Google Scholar 

  • Newton, I. (1979)Population Ecology of Raptors. Buteo Books, Vermillon, South Dakota, USA.

    Google Scholar 

  • Schaffer, W. M., Inouye, R. S. and Whittam, T. S. (1982) Energy allocation by an annual plant when the effects of seasonality on growth and reproduction are decoupled.Amer. Natur. 120, 787–815.

    Google Scholar 

  • Singer, M. C. (1982) Sexual selection for small size in male butterflies.Amer. Natur. 119, 440–3.

    Google Scholar 

  • Stearns, S. C. and Crandall, R. E. (1981) Quantitative predictions of delayed maturity.Evolution 35, 455–63.

    Google Scholar 

  • Sutherland, W. J., Grafen, A. and Harvey, P. H. (1986) Life history correlations and demography.Nature 320, 88.

    Google Scholar 

  • Vincent, T. L. and Puliam, H. R. (1980) Evolution of life history strategies for an asexual annual plant model.Theor. Pop. Biol. 17, 215–31.

    Google Scholar 

  • Wiley, R. H. (1974) Evolution of social organization and life-history patterns among grouse.Q. Rev. Biol. 49, 201–27.

    PubMed  Google Scholar 

  • Woolbright, L. L. (1983) Sexual selection and size dimorphism in anuran Amphibia.Amer. Natur. 121, 110–19.

    Google Scholar 

  • Ziolko, M. and Kozlowski, J. (1983) Evolution of body size: an optimization model.Math. Biosci. 64, 127–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozłowski, J., Wiegert, R.G. Optimal age and size at maturity in annuals and perennials with determinate growth. Evol Ecol 1, 231–244 (1987). https://doi.org/10.1007/BF02067553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067553

Keywords

Navigation