Skip to main content
Log in

Monoterpenes: Their effects on ecosystem nutrient cycling

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

This article explores the evidence for monoterpenes to alter rates of nutrient cycling, with particular emphasis on the nitrogen (N) cycle, from an ecosystem perspective. The general N cycle is reviewed and particular processes are noted where monoterpenes could exert control. The theoretical and conceptual basis for a proposed mode of action by which monoterpenes effect the processes of N mineralization and nitrification is presented, along with recent developments. It is hypothesized that monoterpenes retained in litter enhance the frequency of fire, which in turn changes many N-cycling processes. Experimental support for these roles is presented that includes effects at the cellular level and progresses through populations and communities (microbial and invertebrate) involved in N mineralization and immobilization processes. Since many inhibitors of ammonium oxidation also inhibit methane oxidation, monoterpenes also may alter processes within the carbon cycle. Finally, areas for future research that appear most promising are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blake, D.R., andRowland, R.S. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987.Science 239:1129–1131.

    Google Scholar 

  • Bollen, W.B., andWright, E. 1961. Microbes and nitrates in soils from virgin and young-growth forests.Can. J. Microbiol. 7:785–792.

    PubMed  Google Scholar 

  • Bremner, J.M., andMcCarty, G.W. 1988. Effects of terpenoids on nitrification in soil.Soil Sci. Soc. Am. J. 52:1630–1633.

    Google Scholar 

  • Carlson, H.M., Joergensen, L., andDegn, H. 1991. Inhibition by ammonia of methane utilization inMethylococcus capsulatus (Bath).Appl. Microbiol. Biotechnol. 35:124–127.

    Google Scholar 

  • Chandler, C., Cheney, P., Thomas, P., Trabaud, L., andWilliams, D. 1983. Fire in Forestry, Vol. 1. John Wiley & Sons, New York.

    Google Scholar 

  • Courtney, K.J., Ward, B.B., andLangenheim, J.H. 1991. The effect of coastal redwood monoterpenes onNitrosomonas europaea.Am. J. Bot. Suppl. 78:144–145.

    Google Scholar 

  • Davidson, E.A., Hart, S.C., Shanks, C.A., andFirestone, M.K. 1991. Measuring gross nitrogen mineralization, immobilization, and nitrification by15N isotopic dilution in intact soil cores.J. Soil Sci. 42:335–349.

    Google Scholar 

  • De Luca, T.H., andKeeney, D.R. 1993. Soluble organics and extractable nitrogen in paired prairie and cultivated soils of central Iowa.Soil Sci. 155:219–228.

    Google Scholar 

  • Dev, S. (ed.). 1982. Handbook of terpenoids-monoterpenoids. Vols. 1 and 2. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Evans, J.R., andSeemann, J.R. 1989. The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences, and control, pp. 183–205,in W. Briggs (ed.), Photosynthesis. Alan R. Liss, New York.

    Google Scholar 

  • Fritz, R.S., andSimms, E.L. 1992. Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago.

    Google Scholar 

  • Gershenzon, J., andCroteau, R. 1991. Terpenoids, pp. 165–219,in G.A. Rosenthal and M.R. Berenbaum (eds). Herbivores, Their Interaction with Secondary Metabolites, Vol. 1, The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • Gower, S.T., Vogt, K.A., andGrier, C.C. 1992. Carbon dynamics of Rocky Mountain Douglasfir: Influence of water and nutrient availability.Ecol. Monogr. 62:43–65.

    Google Scholar 

  • Harborne, J.B., andTomas-Barberan, F.A. (eds.). 1991. Ecological Cnd Biochemistry of Plant Terpenoids. Proceedings of the Phytochemical Society of Europe. Clarendon Press, Oxford.

    Google Scholar 

  • Himejima, M., Hobson, K.R., Otsuka, T., Wood, D.L., andKubo, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine treePinus ponderosa: A defense mechanism against microbial invasion.J. Chem. Ecol. 18:1809–1818.

    Google Scholar 

  • Howard, P.J.A., andHoward, D.M. 1991. Inhibition of nitrification by aqueous extracts of tree leaf litters.Rev. Ecol. Biol. Sol 28:255–264.

    Google Scholar 

  • Hyman, M.R., andWood, P.M. 1985a. Suicidal inactivation and labelling of ammonia monooxygenase by acetylene.Biochem. J. 227:719–725.

    PubMed  Google Scholar 

  • Hyman, M.R., Sansome-Smith, A.W., Shears, J.H., andWood, P.M. 1985b. A kinetic study of benzene oxidation to phenol by whole cells ofNitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone.Arch. Microbiol. 143:302–306.

    Google Scholar 

  • Hynes, R.K., andKnowles, R. 1982. Effect of acetylene on autotrophic and heterotrophic nitrification.Can. J. Microbiol. 28:334–340.

    Google Scholar 

  • Jansson, S.L. 1981. Rapporteur's comments: Mineralization and mobilization of soil nitrogen by microorganisms. Terrestrial nitrogen cycles.Ecol. Bull. (Stockholm) 33:195–199.

    Google Scholar 

  • Keener, W.K., andArp, D.J. 1993. Kinetic studies of ammonia monooxygenase inhibition inNitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay.Appl. Environ. Microbiol. 59:2501–2510.

    Google Scholar 

  • Lamb, B., Westgerg, H., Allwine, E., andQuarles, T. 1985. Biogenic hydrocarbon emissions from deciduous and coniferous species in the U.S.J. Geophys. Res. 90:2380–2390.

    Google Scholar 

  • Logan, J., Prather, M., Wofsy, S., andMcElroy, M. 1981. Tropospheric chemistry: A global perspective.J. Geophys. Res. 86:7210–7254.

    Google Scholar 

  • McCarty, G.W., andBremner, J.M. 1986. Inhibition of nitrification in soil by acetylenic compounds.Soil Sci. Soc. Am. J. 50:1198–1201.

    Google Scholar 

  • McTavish, J., Fuchs, J.A., andHooper, A.B. 1993. Sequence of the gene coding for ammonia monooxygenase inNitrosomonas europaea.J. Bacteriol. 175:2436–2444.

    PubMed  Google Scholar 

  • Mutch, R.W. 1970. Wildland fires and ecosystems—a hypothesis.Ecology 51:1046–1051.

    Google Scholar 

  • Powell, S.J. 1986. Laboratory studies of inhibition of nitrification, pp 79–97, in J.I. Prosser (ed.). Nitrification. IRL Press, Oxford, England.

    Google Scholar 

  • Powell, S.J., andProsser, J.I. 1985. The effect of nitrapyrin and chloropicolinic acid on ammonium oxidation byNitrosomonas europaea.FEMS Microbial. Lett. 28:51–54.

    Google Scholar 

  • Prescott, C.E., Corbin, J.P., andParkinson, D. 1989a. Biomass, productivity, and nutrient-use efficiency of aboveground vegetation in four Rocky Mountain coniferous forests.Can. J. For. Res. 19:309–317.

    Google Scholar 

  • Prescott, C.E., Corbin, J.P., andParkinson, D. 1989b. Input, accumulation, and residence times of carbon, nitrogen, and phosphorus in four Rocky Mountain coniferous forests.Can. J. For. Res. 19:489–498.

    Google Scholar 

  • Prescott, C.E., Corbin, J.P., andParkinson, D. 1992. Availability of nitrogen and phosphorus in the forest floors of Rocky Mountain coniferous forests.Can. J. For. Res. 22:593–600.

    Google Scholar 

  • Schimel, D.S. 1986. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems.Biogeochemistry 2:345–357.

    Google Scholar 

  • Schimel, J.P., Firestone, M.K., andKillham, K.S. 1984. Identification of heterotrophic nitrification in a Sierran forest soil.Appl. Environ. Microbiol. 48:802–806.

    Google Scholar 

  • Snyder, M.A. 1992. Selective herbivory by Abert's squirrel mediated by chemical variability in ponderosa pine.Ecology 73:1730–1741.

    Google Scholar 

  • Steele, L.P., Fraser, P.J., Rasmussen, R.A., Khalil, M.A.K., Conway, T.J., Crawford, A.J., Gammon, R.H., Masarie, K.A., andThoning, K.W. 1987. The global distribution of methane in the troposphere.J. Atmos. Chem. 5:125–171.

    Google Scholar 

  • Vitousek, P.M., andHowarth, R.W. 1991. Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry 13:87–115.

    Google Scholar 

  • Vitousek, P.M., Gosz, J.R., Grier, C.C., Melillo, J.A., Reiners, W.A., andTodd, R.L. 1979. Nitrate losses from disturbed ecosystems.Science 204:469–474.

    Google Scholar 

  • Vitousek, P.M., Gosz, J.R., Grier, C.C., Melillo, J.M., andReiners, W.A. 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems.Ecol. Monogr. 52:155–177.

    Google Scholar 

  • Ward, B.B. 1987. Kinetic studies on ammonia and methane oxidation byNitrosomonas oceanus.Arch. Microbiol. 147:126–133.

    Google Scholar 

  • White, C.S. 1986a. Effects of prescribed fire on rates of decomposition and nitrogen mineralization in a ponderosa pine ecosystem.Biol. Fertil. Soils 2:87–95.

    Google Scholar 

  • White, C.S. 1986b. Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in forest ecosystems in New Mexico.Biol. Fertil. Soils 2:97–104.

    Google Scholar 

  • White, C.S. 1988. Nitrification inhibition by monoterpenoids: Theoretical mode of action based on molecular structures.Ecology 69:1631–1633.

    Google Scholar 

  • White, C.S. 1990. Comments on “Effects of Terpenoids on Nitrification in Soil.”Soil Sci. Soc. Am. J. 54:296–297.

    Google Scholar 

  • White, C.S. 1991a. The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Results from laboratory bioassays and field studies.Biogeochemistry 12:43–68.

    Google Scholar 

  • White, C.S. 1991b. The interaction of fire, monoterpenes, and soil N-cycling processes in a stand of ponderosa pine (Pinus ponderosa), pp. 138–144, in S.C. Nodvin and T.A. Waldrop (eds.). Fire and the environment: Ecological and cultural perspectives: Proceedings of an International Symposium, March 20–24, 1990. Knoxville, Tennessee. USDA Gen. Tech. Rep. SE-69.

  • White, C.S., andGosz, J.R. 1987. Factors controlling nitrogen mineralization and nitrification in forest ecosystems in New Mexico.Biol. Fertil. Soils 5:195–202.

    Google Scholar 

  • White, C.S., Gosz, J.R., Horner, J.D., andMoore, D.I. 1988. Seasonal, annual, and treatment induced variation in available nitrogen pools and nitrogen cycling processes in soils of two Douglas-fir stands.Biol. Fertil. Soils 6:93–99.

    Google Scholar 

  • Wilt, F.M., Glenn, C.M., Everett, R.L., andHackett, M. 1993. Monoterpene concentrations in fresh, senescent, and decaying foliage of single-leaf pinyon (Pinus monophylla Tott. & Frem.: Pinaceae) from the western Great Basin.J. Chem. Ecol. 19:185–194.

    Google Scholar 

  • Zimmerman, P.R., Greenberg, J.P., andWestberg, C.E. 1988. Measurements of atmospheric hydrocarbons and bigenic emission fluxes in the Amazon boundary layer.J. Geophys. Res. 93:1407–1416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, C.S. Monoterpenes: Their effects on ecosystem nutrient cycling. J Chem Ecol 20, 1381–1406 (1994). https://doi.org/10.1007/BF02059813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02059813

Key Words

Navigation