Skip to main content
Log in

Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Growth experiments and short term experiments in a stirred cuvette showed thatChromatium okenii strain Ostrau is not able to oxidize any reduced sulphur compounds except sulphide and elementary sulphur; thiosulphate, sulphite, and thioglycolate can not be utilized as reducing agents for photosynthesis. The cells are not able to use H2; hydrogenase could not be demonstrated. In the dark, sulphide is formed from intracellular sulphur and the carbon content of the cells decreases. Growth and turnover of sulphur compounds was followed in the light in the presence and absence of acetate as a second carbon source. Sulphide oxidation depends on the presence of CO2 and on light intensity, i.e. sulphur metabolism is governed by the photosynthetic activity of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balizkaya, R. M. 1962. Development of green sulphur bacteriaChloropseudomonas ethylicum at various light intensities. [In Russian]. Mikrobiologiya31: 961–965.

    Google Scholar 

  • Balizkaya, R. M. andKondratieva, E. N. 1963. The effect of light intensity on the use of CO2 and organic compounds in photosynthesis byChloropseudomonas ethylicum. [In Russian]. Mikrobiologiya32: 193–199.

    Google Scholar 

  • Bertolacini, R. J. andBarney, J. E. 1957. Coloric determination of sulfate with barium chloranilate. Anal. Chem.29: 281–283.

    Google Scholar 

  • Breuker, E. 1964. Die Verwertung von intrazellulärem Schwefel durchChromatium vinosum im aeroben und anaeroben Licht- und Dunkelstoffwechsel. Zentr. Bakteriol. Parasitenk. II. Abt. Orig. (in press).

  • Calvin, M., Heidelberger, C., Reid, J. C., Tolbert, B. M. andYankwich, P. F. 1949. Isotopic carbon. John Wiley & Sons, New York.

    Google Scholar 

  • Delwiche, E. A. 1951. Activators for the cysteine desulfhydrase system of anEscherichia coli mutant. J. Bacteriol.62: 717–722.

    PubMed  Google Scholar 

  • Hendley, D. D. 1955. Endogeneous fermentation in Thiorhodaceae. J. Bacteriol.70: 625–634.

    PubMed  Google Scholar 

  • Hurlbert, R. E. andLascelles, J. 1963. Ribulose diphosphate carboxylase in Thiorhodaceae. J. Gen. Microbiol.33: 445–458.

    PubMed  Google Scholar 

  • Kaplan, I. R., andRittenberg, S. C. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol.34: 195–212.

    PubMed  Google Scholar 

  • Kran, G., Schlote, F. W. undSchlegel, H. G. 1963. Cytologische Untersuchungen anChromatium okenii Perty. Naturwissenschaften50: 728–730.

    Google Scholar 

  • Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. J. Bacteriol.64: 187–196.

    PubMed  Google Scholar 

  • Müller, G. O. 1954. Praktikum der quantitativen chemischen Analyse. S. Hirzel Verlag, Leipzig.

    Google Scholar 

  • van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol.3: 1–112.

    Google Scholar 

  • van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae. Arch. Mikrobiol.7: 323–358.

    Google Scholar 

  • Osnizkaya, L. K. 1958. The use of organic compounds by the photosynthetic bacterium from Beloie lake. [In Russian]. Mikrobiologiya.27: 665–672.

    Google Scholar 

  • Pachmayr, F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis, München (Univ.).

  • Peck, H. D., Jr. 1961. Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev.26 (1962): 67–94.

    Google Scholar 

  • Peck, H. D., Jr. andGest, H. 1957. Hydrogenase ofClostridium butylicum. J. Bacteriol.73: 569–580.

    PubMed  Google Scholar 

  • Pfennig, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften48: 136.

    Google Scholar 

  • Pfennig, N. 1962. Über die Kultur vonChromatium okenii. Vorträge aus dem Gesamtgebiet der Botanik, Neue Folge,1: 83–84.

    Google Scholar 

  • Porter, J. R. 1950. Bacterial chemistry and physiology. John Wiley & Sons, New York.

    Google Scholar 

  • la Rivière, J. W. M. 1958. On the microbial metabolism of the tartaric acid isomers. Thesis, Delft.

  • Roelofsen, P. A. 1934. On the metabolism of the purple sulphur bacteria. Proc. Koninkl. Ned. Akad. van Wetenschap. Proc.37: 660–669.

    Google Scholar 

  • Schlegel, H. G. 1962. Die Speicherstoffe vonChromatium okenii. Arch. Mikrobiol.42: 110–116.

    PubMed  Google Scholar 

  • Schlegel, H. G. undLafferty, R. 1961. Radioaktivitätsmessungen an Einzellern auf Membranfiltern. Arch. Mikrobiol.38: 52–54.

    PubMed  Google Scholar 

  • Schlegel, H. G. undPfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Arch. Mikrobiol.38: 1–39.

    PubMed  Google Scholar 

  • Schmidt, K., Liaaen Jensen, S. undSchlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol.46: 117–126.

    PubMed  Google Scholar 

  • Shaposhnikov, V. N., Osnizkaya, L. K. andChudina, V. I. 1961. Development of the purple sulphur bacteriumChromatium vinosum as a function of light intensity. [In Russian]. Mikrobiologiya30: 825–832.

    Google Scholar 

  • Sistrom, W. R. 1962. Observations on the relationship between the formation of photopigments and the synthesis of protein inRhodopseudomonas spheroides. J. Gen. Microbiol.28: 599–605.

    PubMed  Google Scholar 

  • Skarzynski, B. andSzczepkowski, T. W. 1959. Oxidation of thiosulphate byThiobacillus thioparus. Nature183: 1413–1414.

    PubMed  Google Scholar 

  • Smith, A. J. 1964. Sulphur metabolism ofChromatium strain D and rhodanese activity in extracts. J. Gen. Microbiol.34: ix-x.

    Google Scholar 

  • Taylor, J. J. 1958. Thiorhodaceae. I. The effects of sodium thioglycolate on the photosynthetic and dark metabolism of purple sulphur bacteria. Can. J. Microbiol.4: 425–433.

    PubMed  Google Scholar 

  • Toennies, G. andBakay, B. 1953. Photonephelometrical microdetermination of sulfate and organic sulfur. Anal. Chem.25: 160–165.

    Google Scholar 

  • Trüper, H. G., 1964. CO2-Fixierung und Intermediärstoffwechsel beiChromatium okenii Perty. Arch. Mikrobiol.49: 23–50.

    PubMed  Google Scholar 

  • Van Slyke, D. D. andFolch, J., 1940. Manometric carbon determination. J. Biol. Chem.136: 509–541.

    Google Scholar 

  • Wurzschmitt, B. undZimmermann, W. 1950. Die Metallbombe als Hilfsmittel in der Elementaranalyse. Fortschr. Chem. Forsch.1: 485–507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trüper, H.G., Schlegel, H.G. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii . Antonie van Leeuwenhoek 30, 225–238 (1964). https://doi.org/10.1007/BF02046728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02046728

Keywords

Navigation