Skip to main content
Log in

Identification and bioassay of kairomones forHelicoverpa zea

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Hexane extracts of leaves of 307 accessions from 73 host plant species ofHelicoverpa zea were analyzed by gas chromatography (GC) and used forH. zea oviposition and neonate larvae orientation bioassays. The gas chromatographic (GC) retention times of compounds statistically associated with behavioral activity were identified by correlation of GC peak area with oviposition and larval orientation preferences. Although taxonomically diverse in their origin, compounds for study were purified from extracts of species of the genusLycopersicon, due to their relative abundance. The structures of eight long-chain alkanes associated with oviposition preference were assigned by mass spectrometry, and the structures of five similarly associated organic acids and a terpenoid alkene were identified by1H and13C nuclear magnetic resonance spectroscopy. The structures of a number of other phytochemicals from the plant leaves were identified for comparative purposes, including a previously unknown terpene, 7-epizingiberene. Bioassays were performed on the isolated acids and on the alkane wax fractions of severalLycopersicon species, and significant differences were found in oviposition stimulation for both classes of compounds. Of the hundreds of compounds found in the extracts, none were observed to act as oviposition deterrents. The results of these bioassays may be useful in explaining the broad host range ofH. zea, as well as the process and evolution of host plant selection for oviposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, J., andRao, G. S. K. 1971. Studies in terpenoids: XVIII—facile elaboration of (+)-ar-tumerone to (+)-nuciferal via (+)-ar-curcumene.Indian J. Chem. 9:776–779.

    CAS  Google Scholar 

  • Bish, E. B., Bewick, T. A., andShilling, D. G. 1993. Development of a seed bioassay for the study of the allelopathic potential ofLycopersicon hirsutum.HortScience 28:478.

    Google Scholar 

  • Black, T. H. 1983. The preparation and reactions of diazomethane.Aldrich Acta 16:3–10.

    CAS  Google Scholar 

  • Blomquist, G. J., andJackson, L. L. 1973. Incorporation of labeled dietaryn-alkanes into cuticular lipids of the grasshopperMelanoplus sanguinipes.J. Insect Physiol. 19:1639–1647.

    Article  CAS  Google Scholar 

  • Breeden, D. C., andCoates, R. M. 1994. 7-Epizingiberene, a novel bisabolane sesquiterpene from wild tomato leaves.Tetrahedron 50:11123–11132.

    Article  CAS  Google Scholar 

  • Brown, W. V., Jaisson, P., Taylor, R. W., andLacey, M. J. 1990. Novel internally branched, internal alkanes as major components of the cuticular hydrocarbons of the primitive Australian antNothomyrmecia macrops Clark (Hymenoptera: Formicidae).J. Chem. Ecol. 16:2623–2635.

    Article  CAS  Google Scholar 

  • Clark, B. C., Chamblee, T. S., andIacobucci, G. A. 1987. HPLC isolation of the sesquiterpene hydrocarbon germacrene B from lime peel oil and its characterization as an important flavor impact constituent.J. Agric. Food Chem. 35:514–518.

    Article  Google Scholar 

  • Coates, R. M., Dennison, J. F., Juvik, J. A., andBabka, B. A. 1988. Identification of α-santalenoic andendo-β-bergamotenoic acids as moth oviposition stimulants from wild tomato leaves.J. Org. Chem. 53:2186–2192.

    Article  CAS  Google Scholar 

  • Corey, E. J., Gilman, N. W., andGanem, B. E. 1968a. New methods for the oxidation of aldehydes to carboxylic acids and esters.J. Am. Chem. Soc. 90:5616–5617.

    Article  CAS  Google Scholar 

  • Corey, E. J., Katzenellenbogen, J. A., Gilman, N. W., Roman, S. A., andErickson, B. W. 1968b. Stereospecific total synthesis of thedl-C18 Cecropia juvenile hormone.J. Am. Chem. Soc. 90:5618–5620.

    Article  CAS  Google Scholar 

  • Coudron, T. A., andNelson, D. R. 1978. Hydrocarbons in the surface lipids of pupal tobacco budworms,Heliothis virescens.Insect Biochem. 8:59–66.

    Article  CAS  Google Scholar 

  • Douglass, S. K., Juvik, J. A., Pyun, H., andCoates, R. M. 1993. Structure-activity relationships for analogs of (+)-(E)-endo-β-bergamotenoic acid, an oviposition stimulant ofHelicoverpa zea (Boddie).J. Chem. Ecol. 19:11–27.

    Article  CAS  Google Scholar 

  • Ehrlich, P., andRaven, P. 1964. Butterflies and plants: A study in coevolution.Evol. 18:586–608.

    Google Scholar 

  • Eigenbrode, S. D., andEspelie, K. E. 1995. Effects of plant epicuticular lipids on insect herbivores.Annu. Rev. Entomol. 40:171–194.

    Article  Google Scholar 

  • Espelie, K. E., andBernays, E. A. 1989. Diet-related differences in the cuticular lipids ofManduca sexta larvae.J. Chem. Ecol. 15:2003–2017.

    Article  CAS  Google Scholar 

  • Evershed, R. P. 1988. Insect olfaction and molecular structure, pp. 1–33,in D. E. Morgan and N. B. Mandava, (eds.). CRC Handbook of Natural Pesticides, Vol. IV, Part A. Academic Press, New York.

    Google Scholar 

  • Frost, D. J., andBarzilay, J. 1971. Proton magnetic resonance identification of nonconjugatedcis-unsaturated fatty acids and esters.Anal. Chem. 43:1316–1318.

    Article  CAS  Google Scholar 

  • Gülz, P.-G. 1968. Normale und verzweigte Alkane in Chloroplastenpräparaten und Blättern vonAntirrhinum majus.Phytochemistry 7:1009–1017.

    Article  Google Scholar 

  • Guo, Z., Weston, P. A., andSnyder, J. C. 1993. Repellency to two-spotted spider mite,Tetancychus urticae Koch, as related to leaf surface chemistry ofLycopersicon hirsutum accessions.J. Chem. Ecol. 19:2981–2979.

    Article  Google Scholar 

  • Hendry, L. B., Wichmann, J. K., Hindenlang, D. M., Weaver, K. M., andKoorzeniowski, S. H. 1976. Plants—the origin of kairomones utilized by parasitoids of phytophagous insects?J. Chem. Ecol. 2:271–283.

    Article  CAS  Google Scholar 

  • Hutchins, R. F., andMartin, M. M. 1968. The lipids of the common house cricket,Acheta domesticus L. II. Hydrocarbons.Lipids 3:250–255.

    PubMed  CAS  Google Scholar 

  • Jeffree, C. E. 1986. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution, pp. 23–64,in B. Juniper and R. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.

    Google Scholar 

  • Johnson, S. J., King, E. G., andBradley, J. R. 1986. Theory and tactics ofHeliothis control.S. Coop. Ser. Bull. 316:161 pp.

  • Jones, R. L., Burton, R. L., Bowman, M. C., andBeroza, M. 1970. Chemical inducers of oviposition for the corn earworm,Heliothis zea (Boddie)Science. 168:856–857.

    PubMed  CAS  Google Scholar 

  • Jones, R. L., Burton, R. L., McGovern, T. P., andBeroza, M. 1973. Potential oviposition inducers for corn earworms.Ann. Entomol. Soc. Am. 66:921–925.

    CAS  Google Scholar 

  • Juniper, B., andSouthwood, R. (eds.). 1986. Insects and the Plant Surface. Edward Arnold, London, 214 pp.

    Google Scholar 

  • Juvik, J. A., Babka, B. A., andTimmerman, E. A. 1988. Influence of trichome exudates from species ofLycopersicon on oviposition behavior ofHeliothis zea (Boddie).J. Chem. Ecol. 14:1261–1278.

    Article  CAS  Google Scholar 

  • Kogan, M., Helm, C. G., Kogan, J., andBrewer, E. 1989. Distribution and economic importance ofHeliothis virescens andHeliothis zea in North, Central and South America and of their natural enemies and host plants, pp. 241–298,in E. G. King and R. D. Jackson (eds.). Proceedings of the Workshop on Biological Control ofHeliothis: Increasing the Effectiveness of Natural Enemies, November 11–15 1985, New Delhi, India. Far Eastern Regional Research Office, U.S. Department of Agriculture, New Delhi, India.

    Google Scholar 

  • Kolattukudy, P. E. 1969. Plant waxes.Lipids 5:259–275.

    Google Scholar 

  • Kolattukudy, P. E., Croteau, R., andBuckner, J. S. 1976. Biochemistry of Plant Waxes, pp. 289–347,in P. E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, New York.

    Google Scholar 

  • Kovats, E. 1965. Gas chromatographic characterization of organic substances in the retention index system, Chap. 7,in J. C. Giddings and R. Keller (Eds.). Advances in Chromatography, Vol. 1. Marcel Dekker, New York.

    Google Scholar 

  • Kulkarni, Y. S., Niwa, M., Ron, E., andSnider, B. B. 1987. Synthesis of terpenes containing the bicyclo[3.1.1]heptane ring system by the intramolecular [2 + 2] cycloaddition reaction of vinylketenes with alkenes. Preparation of chrysanthenone, β-pinene, β-cis-bergamotene, β-trans-bergamotene, β-copaene and β-ylangene and lemnalol.J. Org. Chem. 52:1568–1576.

    Article  CAS  Google Scholar 

  • Leonard, B. R., Graves, J. B., Burris, E., Pavloff, A. M., andChurch, G. 1989.Heliothis spp. (Lepidoptera: Noctuidae) captures in pheromone traps: Species composition and relationship to oviposition in cotton.J. Econ. Entomol. 82:574–579.

    Google Scholar 

  • Metcalf, R. L. 1985. Plant kairomones and insect pest control.Ill. Nat. Hist. Surv. Bull. 33:175–196.

    Google Scholar 

  • Metcalf, R. L., Metcalf, E. R., Mitchell, W. C., andLee, L. W. 1979. Evolution of olfactory receptor in oriental fruit fly,Dacus dorsalis.Proc. Natl. Acad. Sci. U.S.A., 76:1561–1565.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L., Metcalf, E. R., andMitchell, W. C. 1981. Molecular parameters and olfaction in the oriental fruit flyDacus dorsalis.Proc. Natl. Acad. Sci. U.S.A. 78:4007–4010.

    PubMed  CAS  Google Scholar 

  • Metcalf, R. L., Mitchell, W. C., andMetcalf, E. R. 1983. Olfactory receptors in the melon flyDacus cucurbitae and the oriental fruit flyDacus dorsalis.Proc. Natl. Acad. Sci. U.S.A. 80:3143–3147.

    PubMed  CAS  Google Scholar 

  • Mitchell, E.R., Tingle, F. C., andHeath, R. R. 1990. Ovipositional response of threeHeliothis species (Lepidoptera: Noctuidae) to allelochemicals from cultivated and wild host plants.J. Chem. Ecol. 16:1817–1827.

    Article  Google Scholar 

  • Moncrieff, R. W. 1967. The Chemical Senses, 3rd. ed. Leonard Hill, London.

    Google Scholar 

  • Nelson, D. R. 1977. Long-chain methyl branched hydrocarbons: Occurrence, biosynthesis and function.Adv. Insect Physiol. 13:1–33.

    Article  Google Scholar 

  • Nelson, D. R., Fatland, C. L., Howard, R. W., McDaniel, C. A., andBlomquist, G. J. 1980. Re-analysis of the cuticular methylalkanes ofSolenopsis invicta andS. richteri.Insect Biochem. 10:409–418.

    Article  CAS  Google Scholar 

  • Nelson, D. R., Nunn, N. J., andJackson, L. 1984. Re-analysis of the methylalkanes of the grasshoppers,Melanoplus differentialis, M. packardi andM. sanguinipes.Insect Biochem. 14:677–683.

    Article  CAS  Google Scholar 

  • Pomonis, J. G. 1989. Cuticular hydrocarbons of the screwworm,Cochlionyia hominivorax (Diptera: Calliphoridae).J. Chem. Ecol. 15:2301–2317.

    Article  CAS  Google Scholar 

  • Pomonis, J. G., andHakk, H. 1984. Alkanes from the surface lipids of sunflower stem weevil,Cylindrocopturus adspersus (LeConte).J. Chem. Ecol. 10:1335–1347.

    Article  CAS  Google Scholar 

  • Pomonis, J. G., Nelson, D. R., andFatland, C. F. 1980. Insect hydrocarbons: 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between methyl groups on fragmentation.J. Chem. Ecol. 6:965–972.

    Article  CAS  Google Scholar 

  • Pomonis, J. G., Hakk, H., andFatland, C. L. 1989. Synthetic methyl- and dimethylalkanes: Kovats indices, [13C]NMR and mass spectra of some methylpentacosanes and 2,X-dimethyl-pentacosanes.J. Chem. Ecol. 15:2319–2333.

    Article  CAS  Google Scholar 

  • Raulston, J. R., Summy, K. R., Loera, J., Puir, S. D., andSparks, A. N. 1990. Population dynamics of corn earworm larvae (Lepidoptera: Noctuidae) on corn in the Lower Rio Grande Valley.Environ. Entomol. 19:274–280.

    Google Scholar 

  • Rosenthal, G., andBerenbaum, M. 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd. ed. Academic Press, New York.

    Google Scholar 

  • Snyder, J. C., Guo, Z., Thacker, R., Goodman, J. P., andSt. Pyrek, J. 1993. 2,3-Dihydrofarnesoic acid, a unique terpene from trichomes ofLycopersicon hirsutum, repels spider mites.J. Chem. Ecol. 19:2981–2997.

    Article  CAS  Google Scholar 

  • SPSS-X. 1990. SPSS Reference Guide. SPSS, Inc., Chicago.

    Google Scholar 

  • Städler, E. 1986. Oviposition and feeding stimuli in leaf surface waxes, pp. 105–121,in B. Juniper and R. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.

    Google Scholar 

  • Still, W. C., Kahn, M., andMitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution.J. Org. Chem. 43(14):2923–2925.

    Article  CAS  Google Scholar 

  • St. Pyrek, J., Goodman, J. P., Snyder, J. C., andThacker, R. 1991. Sesquiterpenoid acids deter mite colonization of the tomato relative,Lycopersicon hirsutum. Presented at the International Congress on Natural Products, 32nd meeting, American Society on Pharacognosy, Chicago, Illinois, July 21–26, 1991.

  • Tingle, F. C., Heath, R. R., andMitchell, E. R. 1989. Flight response ofHeliothis zea (GN.) females (Lepidoptera: Noctuidae) to an attractant from groundcherry,Physalis angulata L.J. Chem. Ecol. 15:221–231.

    Article  Google Scholar 

  • Tulloch, A. P. 1976. Chemistry of plant waxes, pp. 235–287,in P. E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, New York.

    Google Scholar 

  • Weston, P. A., Johnson, D. A., Burton, H. T., andSnyder, J. C. 1989. Trichome secretion composition, trichome densities, and spider mite resistance of ten accessions ofLycopersicon hirsutum.J. Am. Soc. Hortic. Sci. 114:492–498.

    Google Scholar 

  • Wisemann, B. R. 1989. Resistance of corn toHeliothis zea.S. Coop. Ser. Bull. 337:21–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breeden, D.C., Young, T.E., Coates, R.M. et al. Identification and bioassay of kairomones forHelicoverpa zea . J Chem Ecol 22, 513–539 (1996). https://doi.org/10.1007/BF02033653

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033653

Key Words

Navigation