Skip to main content
Log in

Photodetection and photodynamic therapy of ‘early’ squamous cell carcinomas of the pharynx, oesophagus and tracheo-bronchial tree

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The efficacy of photodynamic therapy (PDT) alone was evaluated on 41 ‘early’ squamous cell carcinomas of the pharynx (10), oesophagus (15) and tracheo-bronchial tree (16). All lesions but two were synchronous second primaries in ENT-patients suffering from a more extensive cancer, governing the overall oncological prognosis.

Photofrin I (3 mg/kg) or Photofrin II (2 mg/kg) were injected 72 h prior to the red light irradiation, supplied by an argon pumped dye laser. A diffusing cylinder was used to obtain a homogeneous light distribution at the tumour site (60 J to 150 J/cm2). In the oesophagus and bronchi, the results are good for cancers staged in situ or microinvasive at endoscopy (two recurrencies for 23 lesions treated). For more advanced cancers (submucosal in the oesophagus or invading the bronchial cartilage), the results are less satisfactory (three recurrencies for eight lesions treated). In the pharynx where light dosimetry is more difficult, the rate of recurrencies is higher (3/10 lesions treated). In the bronchi (one case) and oesophagus (one case), the longest disease-free survival is now 5 years.

The irradiation of a non-cancerous zone of normal buccal mucosa on 25 patients having received HPD showed necrosis in all cases with light doses as low as 50mW/cm2 for 20 min (60 J cm−2), even with Photofrin II.

We encountered six complications (three cicatricial stenosis, two fistulae, one severe sunburn), most of them resulting from the lack of selectivity of HPD. According to these experiments, PDT is efficient at destroying early squamous cell carcinomas in the pharynx, oesophagus and bronchi, but the tumour selectivity of HPD is poor in the digestive tract lined with squamous cell epithelium. The only hope for the future lies in the synthesis of a more selective and more stable photosensitizer. This discussion reviews possible directions of research for the development of new dyes (cationic dyes, dyes attached to monoclonal antibodies, etc), for PDT and hyperthermia, for photodetection of early cancers using a fluoro-endoscope, and finally, for tumour depth profiling in hollow organs using lasers of different wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Slaughter DP, Southwick HW, Smejkal W. ‘Field cancerization’ in oral stratified squamous epithelium. Clinical implications of multicentric origin.Cancer 1953,6:963–8

    Google Scholar 

  2. Monnier Ph, Savary M, Pasche R, Anani P. Endoscopic morphology of microinvasive squamous cell carcinoma of the oesophagus.Clin Oncol 1982,1:559–70

    Google Scholar 

  3. Pasche R, Savary M, Monnier Ph. Multiple squamous cell carcinoma of the upper digestive and lower respiratory tracts: methodology of endoscopic screening.Acta Endoscopica 1981,11:277–91

    Google Scholar 

  4. Carruth JAS. Resection of the tongue with the CO2 laser: 100 cases.J Laryngol Otol 1985,99:887–9

    Google Scholar 

  5. Dougherty TJ. Photodynamic therapy (PDT) of malignant tumors.Crit Rev Oncol Hematol 1984,2:83–116

    Google Scholar 

  6. Kessel D. Photodynamic therapy with derivatives of haematoporphyrin and tetraphenylporphine.Laser Med. Sci. 1987,2:95–9

    Google Scholar 

  7. Van den Bergh H. Light and porphyrins in cancer therapy.Chemistry Britain 1986,22:430–9

    Google Scholar 

  8. Wilson BC, Patterson MS. The physics of photodynamic therapy.Phys Med Biol. 1986,31:327–60

    Google Scholar 

  9. Spikes JO, Jori G. Photodynamic therapy of tumours and other diseases using porphyrins.Lasers Med Sci 1987,2:3–15

    Google Scholar 

  10. Spikes JD, Straight RC. Photodynamic behavior of porphyrins in model cell, tissue and tumor systems. In: Jori G, Perria C (eds)Photodynamic therapy of tumors and other diseases. Padova: Libreria Progetto 1985:45–53

    Google Scholar 

  11. Reddi E, Jori G. Steady-state and time-resolved spectroscopic studies of photodynamic sensitizers, porphyrins and phthalocyanines.Rev Chem Intermed 1988,10:241–68

    Google Scholar 

  12. Von Tappeiner H, Jesionek A. Therapeutische Versuche mit fluoreszierenden Stoffen.Muench Med Wochschr 1903,1:2042–4

    Google Scholar 

  13. Hausmann W. Die sensibilisierende Wirkung tierischer Farbstoff und ihre physiologische Bedeutung.Wien Klin Wochschr 1908,21:1527–9

    Google Scholar 

  14. Meyer-Betz F. Untersuchungen über die biologische (photodynamische) Wirkung des Hämatoporphyrins und andere Derivate des Blut- und Gallenfarbstoffs.Dtsch Arch Klin Med 1913,112:476–503

    Google Scholar 

  15. Policard A. Etudes sur les aspect offerts par des tumeurs expérimentales examinées à la lumière de Woods.CR Soc Biol 1924,91:1423–5

    Google Scholar 

  16. Auler H, Banzer G. Untersuchungen über die Rolle des Porphyrine bei geschwulstkranken Menschen und Tieren.Z Krebsforsch 1942,53:65–8

    Google Scholar 

  17. Figge FHJ, Weiland GS, Manganiello LOJ. Cancer detection and therapy. Affinity of neoplastic, embryonic and traumatized tissues for porphyrins and metalloporphyrins.Proc Soc Exp Biol Med 1948,68:640–1

    Google Scholar 

  18. Lipson BL, Baldes EJ. Photosensitivity and heat.Arch Dermatol 1960,82:517–20

    Google Scholar 

  19. Lipson RL, Baldes EJ, Olsen AM. The use of a derivative of hematoporphyrin in tumor detection.J Natl Cancer Inst 1961,26:1–8

    Google Scholar 

  20. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative.Arch Dermatol 1960,82:508–16

    Google Scholar 

  21. Lipson RL, Baldes EJ, Olsen AM. Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease.J Thorac Cardiovasc Surg 1961,42:623–9

    Google Scholar 

  22. Lipson RL, Baldes EJ, Olsen AM. Further evaluation of the use of hematoporphyrin derivative as a new aid for the endoscopic detection of malignant disease.Dis Chest 1964,46:676–9

    Google Scholar 

  23. Diamond I, Granelli SG, McDonagh AF et al. Photodynamic therapy of malignant tumours.Lancet 1972,2:1175–7

    Google Scholar 

  24. Dougherty TJ. Activated dyes as antitumor agents.J Natl Cancer Inst 1974,52:1333–6

    Google Scholar 

  25. Dougherty TJ, Grindey GB, Weishaupt KR et al. Photoradiation therapy. Cure of animal tumors with hematoporphyrin and light.J Natl Cancer Inst 1975,55:115–20

    Google Scholar 

  26. Dougherty TJ, Lawrence G, Kaufman JH et al. Photoradiation in the treatment of recurrent breast carcinoma.J Natl Cancer Inst 1979,62:231–7

    Google Scholar 

  27. Dougherty TJ, Kaufman JE, Goldfarb A et al. Photoradiation therapy for the treatment of malignant tumors.Cancer Res 1978,38:2628–35

    Google Scholar 

  28. Kelly JF, Snell ME. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder.J Urol 1976,115:150–1

    Google Scholar 

  29. Kelly JF, Snell ME, Berenbaum MC. Photodynamic destruction of human bladder carcinoma.Br J Cancer 1975,31:237–44

    Google Scholar 

  30. Kinsey JH, Cortese DA, Sanderson DR. Detection of hematoporphyrin fluorescence during fiberoptic bronchoscopy to localize early bronchogenic carcinoma.Mayo Clin Proc 1978,53:594–600

    Google Scholar 

  31. Kinsey JH, Cortese DA. Endoscopic system for simultaneous visual examination and electronic detection of fluorescence.Rev Sci Instrum 1980,51:1403–6

    Google Scholar 

  32. Profio AE, Doiron DR. A feasibility study of the use of fluorescence bronchoscopy for localization of small lung tumours.Phys Med Biol 1977,22:949–57

    Google Scholar 

  33. Doiron DR, Profio AE, Vincent RG, Dougherty TJ. Fluorescence bronchoscopy for detection of lung cancer.Chest 1979,76:27–32

    Google Scholar 

  34. Profio AE, Doiron DR, King EG. Laser fluorescence bronchoscope for localization of occult lung tumors.Med Phys 1979,6:523–5

    Google Scholar 

  35. Balchum OJ, Doiron DR, Profio AE, Huth GC. Fluorescence bronchoscopy for localizing early bronchial cancer and carcinoma in situ. In:Recent results in cancer research, Vol. 82. Berlin-Heidelberg: Springer-Verlag 1982:97–120

    Google Scholar 

  36. King EG, Man G, Le Riche J et al. Fluorescence bronchoscopy in the localization of bronchogenic carcinoma.Cancer 1982,49:777–82

    Google Scholar 

  37. Profio AE, Doiron DR, Balchum OJ, Huth GC. Fluorescence bronchoscopy for localization of carcinoma in situ.Med Phys 1983,10:35–9

    Google Scholar 

  38. Profio AE, Doiron DR, Sarnaik J. Fluorometer for endoscopic diagnosis of tumors.Med Phys 1984,11:516–20

    Google Scholar 

  39. Profio AE. Laser excited fluorescence of hematoporphyrin derivative for diagnosis of cancer.IEEE J Quantum Electron 1984,20:1502–7

    Google Scholar 

  40. Profio AE, Balchum OJ, Carstens F. Digital background subtraction for fluorescence imaging.Med Phys 1986,13:717–21

    Google Scholar 

  41. Profio AE. Review of fluorescence diagnosis using porphyrins.Proc SPIE 1988,907:150–6

    Google Scholar 

  42. Balchum OJ, Profio AE, Razum NJ. Mapping bronchial carcinoma in situ lung cancer lesions by combined imaging fluorescence bronchoscopy and ratioing fluorometer probe.Proc SPIE 1988,908:103–6

    Google Scholar 

  43. Depeursinge C, Wagnieres G, Studzinski A et al. The detection of small tumors by laser induced fluorescence endoscopy. Abstract issue of the International Conference on PDT.Laser Med Sci 1988,3:12

    Google Scholar 

  44. Hayata Y, Kato H, Ono J et al. Fluorescence fiberoptic bronchoscopy in the diagnosis of early stage lung cancer. In:Recent results in cancer research, Vol. 82. Berlin-Heidelberg: Springer-Verlag 1982:121–30

    Google Scholar 

  45. Kato H, Aizawa K, Ono J et al. Clinical measurement of tumor fluorescence using a new diagnostic system with hematoporphyrin derivative, laser photoradiation and a spectroscope.Lasers Surg Med 1984,4:49–58

    Google Scholar 

  46. Aizawa K, Kato H, Ono J et al. A new diagnostic system for malignant tumors using hematoporphyrin derivative, laser photoradiation and a spectroscope. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R. Liss 1984:227–238

    Google Scholar 

  47. Hirano T, Ishida K, Yasukawa M et al. Cancer diagnosis system using HPD and excimer-dye laser. In: Jori G, Perria C (eds)Photodynamic therapy of tumors and other diseases. Padova:Libreria Progetto 1985:325–8

    Google Scholar 

  48. Hirano T, Ishizuka M, Suzuki K et al. Photodynamic cancer diagnosis and treatment system consisting of pulsed lasers and endoscopic spectro-image analyzer.Lasers Life Sci 1989,3:1–18

    Google Scholar 

  49. Benson RC, Farrow GM, Kinsey JH et al. Detection and localization of in situ carcinoma of the bladder with hematorporphyrin derivative.Mayo Clin Proc 1982,57:548–55

    Google Scholar 

  50. Lin CW, Bellnier DA, Prout GR et al. Cystoscopic fluorescence detector for photodetection of bladder carcinoma with hematoporphyrin derivative.J Urol 1983,131:587–90

    Google Scholar 

  51. Baumgartner R, Fisslinger H, Jocham D et al. A fluorescence imaging device for endoscopic detection of early stage cancer. Instrumental and experimental studies.Photochem Photobiol 1987,46:759–64

    Google Scholar 

  52. Montan S, Svanberg K, Svanberg S. Multicolor imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative-bearing tissue.Optics lett 1985,10:56–8

    Google Scholar 

  53. Svanberg K, Kjellen E, Ankerst J et al. Fluorescence studies of hematoporphyrin derivative in normal and malignant rat tissue.Cancer Res 1986,46:3803–8

    Google Scholar 

  54. Anderson-Engels S, Ankerst J, Brun A et al. Tissue diagnostics using laser-induced fluorescence.Ber Busenges Phys Chem 1989,93:335–42

    Google Scholar 

  55. Evensen JF, Sommer S, Moan J et al. Tumor-localizing and photosensitizing properties of the main components of hematoporphyrin derivative.Cancer Res 1984,44:482–6

    Google Scholar 

  56. Gomer GJ, Dougherty TJ. Determination of3H and14C hematoporphyrin derivative distribution in malignant and normal tissue.Cancer Res 1979,39:146–51

    Google Scholar 

  57. Evensen JF, Moan J, Hindar A et al. Tissue distribution of3H-hematoporphyrin derivative and its main components,67Ga and131I-albumin in mice bearing Lewis lung carcinoma. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R. Liss 1984:541–62

    Google Scholar 

  58. Tralau CJ, MacRobert AJ, Coleridge-Smith PD et al. Photodynamic therapy with phthalocyanine sensitisation: quantitative studies in a transplantable rat fibrosarcoma.Br J Cancer 1987,55:389–95

    Google Scholar 

  59. Kessel D. Hematoporphyrin and HPD: photophysics, photochemistry and phototherapy.Photochem Photobiol 1984,39:851–9

    Google Scholar 

  60. Sommer S, Moan J, Rimington C. Separation of different fractions of hematoporphyrin derivative by a twophase extraction system. In: Kessel D (ed)Advances in experimental medicine and biology, Vol. 193. New York: Plenum 1985:207–11

    Google Scholar 

  61. Dougherty TJ, Potter WR, Weishaupt KR. The structure of the active component of hematoporphyrin derivative. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R. Liss 1984:301–14

    Google Scholar 

  62. Kessel D. Tumor localization and photosensitization by derivatives of hematoporphyr in: a review.IEEE J Quantum Electron 1987,23:1718–20

    Google Scholar 

  63. Gomer CJ, Dougherty TJ. Determination of (3H)- and (14C)-hematoporphyrin derivative distribution in malignant and normal tissue.Cancer Res 1979,39:146–51

    Google Scholar 

  64. Barel A, Jori G, Perin A et al. Role of high-, low- and very-low density lipoproteins in the transport and tumor-delivery of hematoporhyrin in vivo.Cancer Lett 1986,32:145–50

    Google Scholar 

  65. Jori G, Spikes J. Photobiochemistry of porphyrins. In: Smith KC (ed)Topics in photomedicine. New York: Plenum 1984:183–318

    Google Scholar 

  66. Dubbelman TMAR, Smeets M, Boegheim JPJ. Cell models. In: Moreno G, Pottier RH, Truscott TG (eds)Photosensitization: molecular, cellular and medical aspects, NATO ASi Series. Series H: Cell Biology 1987,15:157–70

  67. Berns MW, Dahlman A, Johnson FM et al. In vitro cellular effects of hematoporphyrin derivative.Cancer Res 1982,42:2325–9

    Google Scholar 

  68. Anderson RE, Wharen RE, Jones CA et al. Parameters of hematoporphyrin derivative tumor cell killing efficiency: decomposition of hematoporphyrin derivative at high power densities. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R. Liss 1984:483–500

    Google Scholar 

  69. Mang TS, Dougherty TJ, Potter WR et al. Photobleaching of porphyrins used in photodynamic therapy and implications for therapy.Photochem Photobiol 1987,45:501–6

    Google Scholar 

  70. Moan J, Rimington C, Malik Z. Photoinduced degradation and modification of photofrin II in cells in vitro.Photochem Photobiol 1988,47:363–7

    Google Scholar 

  71. Star WM, Marijnissen HPA, Van Den Berg-Blok AE. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers.Cancer Res 1986,46:2532–40

    Google Scholar 

  72. Monnier Ph, Savary M, Pasche T. Contribution of Toluidine blue to oro-pharyngo-oesophageal cancerology.Acta Endoscopica 1981,11:299–310

    Google Scholar 

  73. Mandard AM, Tourneux J, Gignaux M et al. In situ carcinoma of the esophagus: macroscopic study with particular reference to the Lugol test.Endoscopy 1980,12:51–7

    Google Scholar 

  74. Monnier Ph, Savary M, Pasche R, Anani P. Intraepithelial carcinoma of the esophagus: endoscopic morphlogy.Endoscopy 1981,13:185–91

    Google Scholar 

  75. Monnier Ph, Savary M, Anani P. Endoscopic morphology of'early' esophageal carcinoma. In: De Meester TR, Skinner DB (eds)Esophageal disorders: pathophysiology and therapy. New York: Raven Press 1985:333–46

    Google Scholar 

  76. Pasche Ph. Le staging endoscopique du cancer précoce pour la voie digestive supérieur. In:Problèmes actuels d'Otorhinolaryngologie, ORL 12. Bern-Stuttgart-Toronto:Hans Huber Verlag 1988:131–7

    Google Scholar 

  77. Hayata Y, Kato H, Konaka C et al. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer.Chest 1982,81:269–77

    Google Scholar 

  78. Zalar GL, Poh-Fitzpatrick M, Krohn DL et al. Induction of drug photosensitization in man after parenteral exposure to hematoporphyrin.Arch Dermatol 1977,113:1392–7

    Google Scholar 

  79. Schuller DE, McCoughn JS, Rock RP. Photoradiation in head and neck cancer.Arch Otolaryngol 1985,3:351–5

    Google Scholar 

  80. Wile AG, Novotny J, Mason GR. Photoradiation therapy of head and neck cancer.Am J Clin Oncol 1984,6:39–63

    Google Scholar 

  81. Gluckman JL, Weissler MC. Role of photodynamic therapy in the management of early cancers of the upper aerodigestive tract.Lasers Med Sci 1986,1:217–20

    Google Scholar 

  82. Dahlman A, Wile A, Burns RG et al. Laser photoradiation therapy of cancer.Cancer Res 1983,43:430–4

    Google Scholar 

  83. Kato H, Konaka C, Ono J et al. Preoperative laser photodynamic therapy in combination with operation in lung cancer.J Thorac Cardiovasc Surg 1985,90:420–9

    Google Scholar 

  84. Kato H, Konaka C, Kawate N et al. Five-year disease-free survival of a lung cancer patient treated only by photodynamic therapy.Chest 1986,90:768–70

    Google Scholar 

  85. Cortese DA, Kinsey JH. Endoscopic management of lung cancer with hematoporphyrin derivative phototherapy.Mayo Clin Proc 1982,57:543–7

    Google Scholar 

  86. Kato H, Kawate N, Kinoshita K et al. Photodynamic therapy of early-stage lung cancer. In:Photosensitizing compounds: their chemistry, biology and clinical use, Ciba Foundation Symposium 146. Chichester: Wiley 1989:183–97

    Google Scholar 

  87. Vincent RG, Dougherty TJ, Rao U et al. Photoradiation therapy in advanced carcinoma of the trachea and bronchus.Chest 1984,85:29–33

    Google Scholar 

  88. Kato H, Kawagushi M, Konaka C et al. Evaluation of photodynamic therapy in gastric cancer.Lasers Med Sci 1986,1:67–74

    Google Scholar 

  89. Moan J. The photochemical yield of singlet oxygen from porphyrins in different states of aggregation.Photochem Photobiol 1984,39:445–9

    Google Scholar 

  90. Andreoni A, Cubeddu R, De Silvestri S et al. Hematoporphyrin derivative: experimental evidence for aggregated species.Chem Phys Lett 1982,88:33–6

    Google Scholar 

  91. Wilson BC, Jeeves WP, Lowe DM et al. Light propagation in animal tissues in the wavelength range 375–825 nanometers. In: Doiron DR, Gomer CJ (eds)Porphyrin localization and treatment of tumors. New York: Alan R. Liss 1984:115–32

    Google Scholar 

  92. Dougherty TJ. Photodynamic therapy: mechanisms.Proc SPIE 1989

  93. Van Lier J. New sensitizers for photodynamic therapy of cancer.Light Biol Med 1988,1:133–41

    Google Scholar 

  94. Oseroff AR, Ohvoha D, Ara G et al. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells.Proc Natl Acad Sci USA, 1986,83:9729–33

    Google Scholar 

  95. Mew D, Wat CK, Towers GHN et al. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates.J Immunol 1983,130:1437–77

    Google Scholar 

  96. Mew D, Lum V, Wat CK et al. Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill, selected cell lines subsequent to light activation.Cancer Res 1985,45:4380–6

    Google Scholar 

  97. Oseroff AR, Ohvoha D, Hasan T et al. Antibody-targeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibodychlorin E6 conjugates.Proc Natl Acad Sci USA 1986.83:8744–8

    Google Scholar 

  98. Oseroff AR, Ara G, Ohvoha D et al. Strategies for selective cancer photochemotherapy: antibodytargeted and selective carcinoma cell photolysis.Photochem Photobiol 1987,46:83–96

    Google Scholar 

  99. Hasan T, Lin CW, Lin A. Laser induced selective cytotoxicity using monoclonal antibody-chromophore conjugates.Prog Clin Biol Res 1989,288:471–7

    Google Scholar 

  100. Waldow SM, Henderson BW, Dougherty TJ. Hyperthermic potentiation of photodynamic therapy employing photofrin I and II: comparison of results using three animal tumor models.Lasers Surg Med 1987,7:12–22

    Google Scholar 

  101. Tio TL, Tytgat GNJ. Atlas of transintestinal ultrasonography. Rijswijk, The Netherlands:Smith Kline and French 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnier, P., Savary, M., Fontolliet, C. et al. Photodetection and photodynamic therapy of ‘early’ squamous cell carcinomas of the pharynx, oesophagus and tracheo-bronchial tree. Laser Med Sci 5, 149–169 (1990). https://doi.org/10.1007/BF02031377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02031377

Key words

Navigation