Skip to main content
Log in

Localization of a theorem of Ambos-Spies and the strong anti-splitting property

  • Published:
Archiv für mathematische Logik und Grundlagenforschung Aims and scope Submit manuscript

Abstract

LetA be an r.e. nonrecursive set. We sayA has thestrong antisplitting property if there exists an r.e. setB with 0< T B< T A such that ifA 1A 2=A andA 1A 2=0 thenA 1 T B impliesA 1 T 0 andB T A 1 impliesA 1 T A. It is shown that below any high r.e. degree there exists an r.e. set with the strong antisplitting property. The main ingredient of the proof is a “localization” of Ambos-Spies' result that the “cup or cap” theorem fails forW-degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K.: Contiguous r.e. degrees. In: Logic Colloquium '83. Springer Lecture notes1104, 1–37 (1984).

    Google Scholar 

  2. Ambos-Spies, K.: Cupping and noncapping in the r.e. weak truth table and Turing degrees. Archiv für Math. Logik.25, 109–126 (1985).

    Article  Google Scholar 

  3. Ambos-Spies, K.: Anti-mitotic recursively enumerable sets. Z. Math. Logik Grund. Math.31, 461–477 (1985).

    Google Scholar 

  4. Ambos-Spies, K., Fejer, P.: Degree-theoretic splitting properties of r.e. sets, (to appear).

  5. Ambos-Spies, K., Jockusch, C., Shore, R., Soare, R.: An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees. Trans. A. M. S.281, 109–128 (1984).

    Google Scholar 

  6. Downey, R.G.: The degrees of r.e. sets without the universal splitting property. Trans. A. M. S.291, 337–351 (1985).

    Google Scholar 

  7. Downey, R., Ingrassia, M., Stob, M., Welch, L.: unpublished manuscript.

  8. Downey, R.G., Jockusch, C.G.:T-degrees, jump classes and strong reducibilities, (to appear). Trans. A. M. S.

  9. Downey, R.G., Stob, M.: Structural interactions of the recursively enumerableT- andW-degrees. Annals Pure and Applied Logic31, 205–236 (1986).

    Article  Google Scholar 

  10. Downey, R.G., Welch, L.V.: Splitting properties of r.e. sets and degrees. J. S. L.51, 88–109 (1986).

    Google Scholar 

  11. Fejer, P., Soare, R.I.: The plus cupping theorem for the recursively enumerable degrees. In: Logic Year 1979–1980, (Ed. Lerman, Schmerl and Soare), pp. 49–62. New York: Springer 1981.

    Google Scholar 

  12. Ladner, R., Sasso, L.: The weak truth table degrees of recursively enumerable sets. Ann. Math. Logic4, 429–448 (1975).

    Article  Google Scholar 

  13. Lerman, M., Remmel, J.B.: The universal splitting property I. In: Logic Colloquium '80, (Ed. Van Dalen, Lascar & Smiley), pp. 181–209, New York: North Holland 1982.

    Google Scholar 

  14. Lerman, M., Remmel, J.B.: The universal splitting property II. J. S. L.49, 137–150 (1984).

    Google Scholar 

  15. Soare, R.I.: The infinite injury priority method. J. S. L.41, 513–530 (1976).

    Google Scholar 

  16. Soare, R.I.: Recursively Enumerable Sets and Degrees, Springer-Verlag (Omega Series), New York (1987).

    Google Scholar 

  17. Stob, M.:Wtt-degrees andT-degrees of r.e. sets. J. S. L.48, 921–930 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by N.U.S. Grant RP 85/83 (Singapore).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downey, R.G. Localization of a theorem of Ambos-Spies and the strong anti-splitting property. Arch math Logik 26, 127–136 (1987). https://doi.org/10.1007/BF02017497

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017497

Classification

Key words

Navigation