Skip to main content
Log in

Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Two cryptoendolithic microbial communities, lichens in the Ross Desert of Antarctica and cyanobacteria in the Negev Desert, inhabit porous sandstone rocks of similar physical structure. Both rock types adsorb water vapor by physical mechanisms unrelated to biological processes. Yet the two microbial communities respond differently to water stress: cryp-toendolithic lichens begin to photosynthesize at a matric water potential of −46.4 megaPascals (MPa) [70% relative humidity (RH) at 8°C], resembling thallose desert lichens. Cryptoendolithic cyanobacteria, like other prokaryotes, photosynthesize only at very high matric water potentials [> −6.9 MPa, 90% RH at 20°C].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belly R, Brock T (1967) Ecology of iron-oxidizing bacteria in pyritic materials associated with coal. J Bacteriol 117:726–732

    Google Scholar 

  2. Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia 10:411–428

    Google Scholar 

  3. Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarct J US 12:26–30

    Google Scholar 

  4. Friedmann EI (1978) Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarct J US 13:162–163

    Google Scholar 

  5. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins Life 10:223–235

    Google Scholar 

  6. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Google Scholar 

  7. Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–260

    PubMed  Google Scholar 

  8. Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–196

    Google Scholar 

  9. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data, 1984 to 1986. Polar Biol 7:237–287

    Google Scholar 

  10. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Reddy CA (ed) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  11. Friedmann EI, Ocampo-Friedmann R (1985) Blue-green algae in arid cryptoendolithic habitats. Arch Hydrobiol Suppl 71:349–350

    Google Scholar 

  12. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  13. Greenfield LG (1988) Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica. Polarforschung 58:211–218

    Google Scholar 

  14. Griffin DM, Luard EJ (1979) Water stress and microbial ecology. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, New York, pp 49–64

    Google Scholar 

  15. Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232

    Google Scholar 

  16. Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  17. Katznelson I (1958) Rainfall in Palestine (in Hebrew). Meterological Papers 8:37–70

    Google Scholar 

  18. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Google Scholar 

  19. Lange OL, Schulze E, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt vonRamalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:38–62

    Google Scholar 

  20. Lange OL, Matthes U (1981) Moisture-dependent CO2 exchange of lichens. Photosynthetica 15:555–574

    Google Scholar 

  21. Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile,Synechococcus lividus (Cyanophyta). Archiv Mikro 78:25–41

    Google Scholar 

  22. Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb Ecology 16:271–289

    Google Scholar 

  23. O'Brien FEM (1948) The control of humidity by saturated salt solutions. J Sci Instrum 25:73–76

    Article  Google Scholar 

  24. Palmer RJ Jr, Friedmann EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58:189–192

    PubMed  Google Scholar 

  25. Palmer RJ Jr, Nienow JA, Friedmann EI (1987) Control of matric water potential by temperature differential. J Micro Methods 6:323–326

    Google Scholar 

  26. Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch Microbiol 130:267–271

    Google Scholar 

  27. Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423

    Google Scholar 

  28. Siebert J, Hirsch P (1988) Characterization of selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol 9:37–44

    PubMed  Google Scholar 

  29. Troller JA (1980) Influence of water activity on microorganisms in food. Food Technology May:76–80, 82

    Google Scholar 

  30. Vestal JR (1987) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Env Microbiol 54:960–965

    Google Scholar 

  31. Vestal JR, Friedmann EI (1983) In situ carbon metabolism by the cryptoendolithic microbial community in the Antarctic cold desert. Antarct J US 17(1982 review):190–191

    Google Scholar 

  32. de Winder B, Matthijs HCP, Mur LR (in press) The role of water retaining substrata on the photosynthetic response of three drought tolerant phototrophic microorganisms isolated from a terrestrial habitat. Arch Microbiol

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, R.J., Friedmann, E.I. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 19, 111–118 (1990). https://doi.org/10.1007/BF02015057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02015057

Keywords

Navigation